File size: 1,492 Bytes
da70b59 0b50e5e da70b59 668a248 0b50e5e 40fac8b da70b59 668a248 da70b59 668a248 da70b59 0b50e5e da70b59 0b50e5e da70b59 0b50e5e 40fac8b 0b50e5e da70b59 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 |
---
base_model: moro01525/T5_FineTuning
tags:
- generated_from_trainer
model-index:
- name: T5_FineTuning
results: []
---
# T5_FineTuning
This model is a fine-tuned version of [google-t5/t5-small](https://huggingface.co/google-t5/t5-small)
It achieves the following results on the evaluation set:
- Loss: 0.8659
## Model description
The model is specialized on Text2Text Generation, in particular the model receives an input like "Ingredients: ingredient1, ingredient2, ..." (containing a list of ingredients) and generates a recipe
## Training and evaluation data
This model is trained using [**these**](https://www.kaggle.com/datasets/shuyangli94/food-com-recipes-and-user-interactions) datasets
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 8
- seed: 55
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 0.9318 | 0.1818 | 1500 | 0.8757 |
| 0.9498 | 0.3636 | 3000 | 0.8712 |
| 0.9157 | 0.5455 | 4500 | 0.8683 |
| 0.9177 | 0.7273 | 6000 | 0.8672 |
| 0.9295 | 0.9091 | 7500 | 0.8659 |
### Framework versions
- Transformers 4.42.4
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1
|