File size: 1,492 Bytes
da70b59
0b50e5e
da70b59
 
 
 
 
 
 
 
 
668a248
0b50e5e
40fac8b
da70b59
 
 
668a248
da70b59
 
 
668a248
da70b59
 
 
 
 
 
0b50e5e
da70b59
0b50e5e
da70b59
 
 
 
 
0b50e5e
 
 
 
40fac8b
 
 
 
 
0b50e5e
 
da70b59
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
---
base_model: moro01525/T5_FineTuning
tags:
- generated_from_trainer
model-index:
- name: T5_FineTuning
  results: []
---

# T5_FineTuning

This model is a fine-tuned version of [google-t5/t5-small](https://huggingface.co/google-t5/t5-small)
It achieves the following results on the evaluation set:
- Loss: 0.8659

## Model description

The model is specialized on Text2Text Generation, in particular the model receives an input like "Ingredients: ingredient1, ingredient2, ..." (containing a list of ingredients) and generates a recipe

## Training and evaluation data

This model is trained using [**these**](https://www.kaggle.com/datasets/shuyangli94/food-com-recipes-and-user-interactions) datasets

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 8
- seed: 55
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1

### Training results

| Training Loss | Epoch  | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 0.9318        | 0.1818 | 1500 | 0.8757          |
| 0.9498        | 0.3636 | 3000 | 0.8712          |
| 0.9157        | 0.5455 | 4500 | 0.8683          |
| 0.9177        | 0.7273 | 6000 | 0.8672          |
| 0.9295        | 0.9091 | 7500 | 0.8659          |


### Framework versions

- Transformers 4.42.4
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1