dna-blockdiff / modeling_bd3lm.py
monsoon-nlp's picture
include code and tokenizer
0a77499
raw
history blame
20.8 kB
"""BD3LM model for Hugging Face.
"""
import math
import typing
import einops
from functools import partial
import torch
import torch.nn as nn
import torch.nn.functional as F
import transformers
from transformers import modeling_outputs
try:
from torch.nn.attention.flex_attention import flex_attention, create_block_mask
FLEX_ATTN_AVAILABLE = True
except:
FLEX_ATTN_AVAILABLE = False
from .configuration_bd3lm import BD3LMConfig
# Flags required to enable jit fusion kernels
torch._C._jit_set_profiling_mode(False)
torch._C._jit_set_profiling_executor(False)
torch._C._jit_override_can_fuse_on_cpu(True)
torch._C._jit_override_can_fuse_on_gpu(True)
def block_diff_mask(b, h, q_idx, kv_idx, block_size=None, n=None):
"""
Constructs the specialized block diffusion attention mask for training
composed of three masks:
- **Block Diagonal Mask (M_BD)**: Self-attention within noised blocks
- **Offset Block Causal Mask (M_OBC)**: Cross-attention for conditional context
- **Block Causal Mask (M_BC)**: Attention to update x0
Args:
b, h: Batch and head indices (ignored for mask logic).
q_idx, kv_idx: Query and Key indices.
seq_len: Total sequence length.
block_size: Defines the block structure.
Returns:
A boolean attention mask.
"""
# Indicate whether token belongs to xt or x0
x0_flag_q = (q_idx >= n)
x0_flag_kv = (kv_idx >= n)
# Compute block indices
block_q = torch.where(x0_flag_q == 1,
(q_idx - n) // block_size,
q_idx // block_size)
block_kv = torch.where(x0_flag_kv == 1,
(kv_idx - n) // block_size,
kv_idx // block_size)
# **1. Block Diagonal Mask (M_BD) **
block_diagonal = (block_q == block_kv) & (x0_flag_q == x0_flag_kv)
# **2. Offset Block-Causal Mask (M_OBC) **
offset_block_causal = (
(block_q > block_kv)
& (x0_flag_kv == 1)
& (x0_flag_q == 0)
)
# **3. Block-Causal Mask (M_BC) **
block_causal = (block_q >= block_kv) & (x0_flag_kv == 1) & (x0_flag_q == 1)
# **4. Combine Masks **
return block_diagonal | offset_block_causal | block_causal
@torch.compile(fullgraph=True, mode="max-autotune-no-cudagraphs")
def fused_flex_attention(q, k, v, mask=None):
return flex_attention(q, k, v, block_mask=mask)
def bias_dropout_add_scale(
x: torch.Tensor,
bias: typing.Optional[torch.Tensor],
scale: torch.Tensor,
residual: typing.Optional[torch.Tensor],
prob: float,
training: bool) -> torch.Tensor:
if bias is not None:
out = scale * F.dropout(x + bias, p=prob, training=training)
else:
out = scale * F.dropout(x, p=prob, training=training)
if residual is not None:
out = residual + out
return out
def get_bias_dropout_add_scale(training):
def _bias_dropout_add(x, bias, scale, residual, prob):
return bias_dropout_add_scale(
x, bias, scale, residual, prob, training)
return _bias_dropout_add
# function overload
def modulate(x: torch.Tensor,
shift: torch.Tensor,
scale: torch.Tensor) -> torch.Tensor:
return x * (1 + scale) + shift
@torch.jit.script
def bias_dropout_add_scale_fused_train(
x: torch.Tensor,
bias: typing.Optional[torch.Tensor],
scale: torch.Tensor,
residual: typing.Optional[torch.Tensor],
prob: float) -> torch.Tensor:
return bias_dropout_add_scale(
x, bias, scale, residual, prob, True)
@torch.jit.script
def bias_dropout_add_scale_fused_inference(
x: torch.Tensor,
bias: typing.Optional[torch.Tensor],
scale: torch.Tensor,
residual: typing.Optional[torch.Tensor],
prob: float) -> torch.Tensor:
return bias_dropout_add_scale(
x, bias, scale, residual, prob, False)
@torch.jit.script
def modulate_fused(x: torch.Tensor,
shift: torch.Tensor,
scale: torch.Tensor) -> torch.Tensor:
return modulate(x, shift, scale)
class Rotary(torch.nn.Module):
def __init__(self, dim, base=10_000):
super().__init__()
inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float() / dim))
self.register_buffer('inv_freq', inv_freq)
self.seq_len_cached = None
self.cos_cached = None
self.sin_cached = None
def forward(self, x, seq_dim=1):
seq_len = x.shape[seq_dim]
if seq_len != self.seq_len_cached:
self.seq_len_cached = seq_len
t = torch.arange(x.shape[seq_dim], device=x.device).type_as(self.inv_freq)
freqs = torch.einsum("i,j->ij", t, self.inv_freq.clone())
emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
# dims are: batch, seq_len, qkv, head, dim
self.cos_cached = emb.cos()[None, :, None, None, :].repeat(1,1,3,1,1)
self.sin_cached = emb.sin()[None, :, None, None, :].repeat(1,1,3,1,1)
# This makes the transformation on v an identity.
self.cos_cached[:,:,2,:,:].fill_(1.)
self.sin_cached[:,:,2,:,:].fill_(0.)
return self.cos_cached, self.sin_cached
def rotate_half(x):
x1, x2 = x[..., : x.shape[-1] // 2], x[..., x.shape[-1] // 2 :]
return torch.cat((-x2, x1), dim=-1)
def apply_rotary_pos_emb_torchscript(qkv, cos, sin):
return (qkv * cos) + (rotate_half(qkv) * sin)
# function overload
def modulate(x, shift, scale):
return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1)
#################################################################################
# Layers #
#################################################################################
class LayerNorm(nn.Module):
def __init__(self, dim):
super().__init__()
self.weight = nn.Parameter(torch.ones([dim]))
self.dim = dim
def forward(self, x):
with torch.cuda.amp.autocast(enabled=False):
x = F.layer_norm(x.float(), [self.dim])
return x * self.weight[None,None,:]
def residual_linear(x, W, x_skip, residual_scale):
"""x_skip + residual_scale * W @ x"""
dim_out, dim_in = W.shape[0], W.shape[1]
return torch.addmm(
x_skip.view(-1, dim_out),
x.view(-1, dim_in),
W.T,
alpha=residual_scale).view(*x.shape[:-1], dim_out)
#################################################################################
# Embedding Layers for Timesteps and Class Labels #
#################################################################################
class TimestepEmbedder(nn.Module):
"""
Embeds scalar timesteps into vector representations.
"""
def __init__(self, hidden_size, frequency_embedding_size=256):
super().__init__()
self.mlp = nn.Sequential(
nn.Linear(frequency_embedding_size, hidden_size, bias=True),
nn.SiLU(),
nn.Linear(hidden_size, hidden_size, bias=True))
self.frequency_embedding_size = frequency_embedding_size
@staticmethod
def timestep_embedding(t, dim, max_period=10000):
"""
Create sinusoidal timestep embeddings.
:param t: a 1-D Tensor of N indices, one per batch element.
These may be fractional.
:param dim: the dimension of the output.
:param max_period: controls the minimum frequency of the embeddings.
:return: an (N, D) Tensor of positional embeddings.
"""
# https://github.com/openai/glide-text2im/blob/main/glide_text2im/nn.py
half = dim // 2
freqs = torch.exp(
- math.log(max_period)
* torch.arange(start=0, end=half, dtype=torch.float32)
/ half).to(device=t.device)
args = t[:, None].float() * freqs[None]
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
if dim % 2:
embedding = torch.cat(
[embedding,
torch.zeros_like(embedding[:, :1])], dim=-1)
return embedding
def forward(self, t):
t_freq = self.timestep_embedding(t, self.frequency_embedding_size)
t_emb = self.mlp(t_freq)
return t_emb
class LabelEmbedder(nn.Module):
"""Embeds class labels into vector representations.
Also handles label dropout for classifier-free guidance.
"""
def __init__(self, num_classes, cond_size):
super().__init__()
self.embedding_table = nn.Embedding(num_classes + 1, cond_size)
self.num_classes = num_classes
# TODO think of initializing with 0.02 std deviation like in original DiT paper
def forward(self, labels):
embeddings = self.embedding_table(labels)
return embeddings
#################################################################################
# Core Model #
#################################################################################
def regular_attention_multi_headed(qkv):
# Assuming qkv is a tensor with shape [batch, seq_len, 3, num_heads, head_dim]
# where the 3 represents Q, K, V packed in that order
batch_size, seq_len, _, num_heads, head_dim = qkv.shape
# Separate Q, K, V from the packed qkv tensor
# [batch_size, seq_len, num_heads, head_dim]
q = qkv[:, :, 0, :, :]
k = qkv[:, :, 1, :, :]
v = qkv[:, :, 2, :, :]
# Transpose and reshape Q and K for batched matrix multiplication:
# [batch_size, num_heads, seq_len, head_dim]
q = q.transpose(1, 2)
k = k.transpose(1, 2)
v = v.transpose(1, 2)
# Compute scaled dot-product attention
# [batch_size, num_heads, seq_len, seq_len]
attention_scores = torch.matmul(
q, k.transpose(-2, -1)) / math.sqrt(head_dim)
# Apply softmax to calculate the attention weights
attention_probs = F.softmax(attention_scores, dim=-1)
# [batch_size, num_heads, seq_len, head_dim]
attention_output = torch.matmul(attention_probs, v)
# [batch_size, seq_len, num_heads, head_dim]
attention_output = attention_output.transpose(1, 2)
return einops.rearrange(attention_output,
'b s h d -> b s (h d)')
class DDiTBlock(nn.Module):
def __init__(self, n, block_size, dim, n_heads, cond_dim, causal=False,
mlp_ratio=4, dropout=0.1, adaln=True, attn_backend='sdpa'):
super().__init__()
self.n = n
self.block_size = block_size
self.n_heads = n_heads
self.attn_backend = attn_backend
self.kv_cache = None
self.causal = causal
self.norm1 = LayerNorm(dim)
self.attn_qkv = nn.Linear(dim, 3 * dim, bias=False)
self.attn_out = nn.Linear(dim, dim, bias=False)
self.dropout1 = nn.Dropout(dropout)
self.norm2 = LayerNorm(dim)
self.mlp = nn.Sequential(
nn.Linear(dim, mlp_ratio * dim, bias=True),
nn.GELU(approximate='tanh'),
nn.Linear(mlp_ratio * dim, dim, bias=True))
self.dropout2 = nn.Dropout(dropout)
self.dropout = dropout
self.adaln = adaln
if self.adaln:
self.adaLN_modulation = nn.Linear(cond_dim, 6 * dim, bias=True)
self.adaLN_modulation.weight.data.zero_()
self.adaLN_modulation.bias.data.zero_()
def _get_bias_dropout_scale(self):
if self.training:
return bias_dropout_add_scale_fused_train
else:
return bias_dropout_add_scale_fused_inference
def get_qkv(self, x, rotary_cos_sin, store_kv=False):
# compute qkv (potentially use cache)
if self.kv_cache is not None:
new_qkv = self.attn_qkv(x[:, -self.block_size:])
qkv = torch.cat((self.kv_cache, new_qkv), dim=1)
else:
qkv = self.attn_qkv(x)
# store kv cache in a sliding window (can't exceed context len)
if store_kv:
self.kv_cache = qkv[:, -(self.n-self.block_size):]
qkv = einops.rearrange(
qkv,
'b s (three h d) -> b s three h d',
three=3,
h=self.n_heads)
with torch.cuda.amp.autocast(enabled=False):
cos, sin = rotary_cos_sin
qkv = apply_rotary_pos_emb_torchscript(
qkv, cos.to(qkv.dtype), sin.to(qkv.dtype))
return qkv
def cross_attn(self, x, qkv, mask=None):
scale = qkv.shape[-1]
qkv = qkv.transpose(1, 3)
mask = mask.bool() if mask is not None else None
x = F.scaled_dot_product_attention(
query=qkv[:, :, 0],
key=qkv[:, :, 1],
value=qkv[:, :, 2],
attn_mask=mask,
is_causal=self.causal,
scale=1 / math.sqrt(scale))
x = x.transpose(1, 2)
x = einops.rearrange(x, 'b s h d -> b s (h d)')
return x
def cross_attn_flex(self, qkv, mask=None):
qkv = einops.rearrange(qkv, 'b s three h d -> b h three s d', h=self.n_heads)
x = fused_flex_attention(
qkv[:, :, 0], qkv[:, :, 1], qkv[:, :, 2], mask=mask)
x = einops.rearrange(x, 'b h s d -> b s (h d)')
return x
def forward(self, x, rotary_cos_sin, c, mask=None,
sample_mode=False, store_kv=False):
bias_dropout_scale_fn = self._get_bias_dropout_scale()
if self.adaln:
(shift_msa, scale_msa, gate_msa, shift_mlp,
scale_mlp, gate_mlp) = self.adaLN_modulation(c)[:, None].chunk(6, dim=2)
# attention operation
x_skip = x
if self.adaln:
x = modulate_fused(self.norm1(x), shift_msa, scale_msa)
else:
x = self.norm1(x)
# get qkvs
if mask is not None and not sample_mode:
n = mask.shape[-1] // 2
qkv_x = self.get_qkv(x[:,:n], rotary_cos_sin)
qkv_x0 = self.get_qkv(x[:,n:], rotary_cos_sin)
qkv = torch.cat((qkv_x, qkv_x0), dim=1)
else:
qkv = self.get_qkv(x, rotary_cos_sin, store_kv=store_kv)
if self.attn_backend == 'flex' and FLEX_ATTN_AVAILABLE:
x = self.cross_attn_flex(qkv, mask=mask)
elif self.attn_backend == 'sdpa' or not FLEX_ATTN_AVAILABLE:
x = self.cross_attn(x, qkv, mask=mask)
else:
raise ValueError('Unknown attention backend')
# mlp operation
if self.adaln:
x = bias_dropout_scale_fn(self.attn_out(x),
None,
gate_msa,
x_skip,
self.dropout)
x = bias_dropout_scale_fn(
self.mlp(modulate_fused(
self.norm2(x), shift_mlp, scale_mlp)),
None, gate_mlp, x, self.dropout)
else:
x = bias_dropout_scale_fn(self.attn_out(x),
None, torch.ones_like(x), x_skip, self.dropout)
x = bias_dropout_scale_fn(
self.mlp(self.norm2(x)),
None, torch.ones_like(x), x, self.dropout)
return x
class EmbeddingLayer(nn.Module):
def __init__(self, dim, vocab_dim):
super().__init__()
self.embedding = nn.Parameter(torch.empty((vocab_dim, dim)))
torch.nn.init.kaiming_uniform_(self.embedding, a=math.sqrt(5))
def forward(self, x):
return self.embedding[x]
class DDitFinalLayer(nn.Module):
def __init__(self, hidden_size, out_channels, cond_dim, adaln=True):
super().__init__()
self.norm_final = LayerNorm(hidden_size)
self.linear = nn.Linear(hidden_size, out_channels)
self.linear.weight.data.zero_()
self.linear.bias.data.zero_()
self.adaln = adaln
if self.adaln:
self.adaLN_modulation = nn.Linear(cond_dim,
2 * hidden_size,
bias=True)
self.adaLN_modulation.weight.data.zero_()
self.adaLN_modulation.bias.data.zero_()
def forward(self, x, c):
if self.adaln:
shift, scale = self.adaLN_modulation(c)[:, None].chunk(2, dim=2)
x = modulate_fused(self.norm_final(x), shift, scale)
else:
x = self.norm_final(x)
x = self.linear(x)
return x
class DITBackbone(nn.Module):
def __init__(
self,
config: BD3LMConfig):
super().__init__()
self.config = config
self.cross_attn = config.cross_attn
self.block_size = config.block_size
self.vocab_size = config.vocab_size
self.n = config.model_length
self.vocab_embed = EmbeddingLayer(
config.hidden_dim,
config.vocab_size)
self.adaln = config.adaln
if self.adaln:
self.sigma_map = TimestepEmbedder(
config.cond_dim)
self.rotary_emb = Rotary(
config.hidden_dim // config.n_heads)
blocks = []
for _ in range(config.n_blocks):
blocks.append(DDiTBlock(self.n,
self.block_size,
config.hidden_dim,
config.n_heads,
config.cond_dim,
causal=config.causal,
dropout=config.dropout,
adaln=config.adaln,
attn_backend=config.attn_backend,))
self.blocks = nn.ModuleList(blocks)
self.output_layer = DDitFinalLayer(
config.hidden_dim,
config.vocab_size,
config.cond_dim,
adaln=config.adaln)
if self.cross_attn:
self.gen_mask(config.model_length, self.block_size, attn_backend=config.attn_backend)
self.precision = torch.float32
def _get_bias_dropout_scale(self):
if self.training:
return bias_dropout_add_scale_fused_train
else:
return bias_dropout_add_scale_fused_inference
def gen_mask(self, seqlen, block_size, attn_backend='sdpa'):
"""Genererates attention mask"""
if attn_backend == 'flex' and FLEX_ATTN_AVAILABLE:
self.mask = create_block_mask(
partial(block_diff_mask, block_size=block_size, n=seqlen),
B=None, H=None, Q_LEN=seqlen*2, KV_LEN=seqlen*2)
elif attn_backend == 'sdpa' or not FLEX_ATTN_AVAILABLE:
self.mask = block_diff_mask(
b=None, h=None, q_idx=torch.arange(seqlen*2)[:, None],
kv_idx=torch.arange(seqlen*2)[None, :], block_size=block_size, n=seqlen)
else:
raise ValueError('Unknown attention backend')
def forward(self, indices, sigma, sample_mode=False,
store_kv=False, output_hidden_states=False):
if not self.config.time_conditioning and self.adaln:
sigma = torch.zeros_like(sigma)
all_hidden_states = []
x = self.vocab_embed(indices)
if output_hidden_states:
all_hidden_states.append(x)
c = None
if self.adaln:
c = F.silu(self.sigma_map(sigma))
if self.cross_attn:
n = self.mask.shape[-1] // 2
rotary_cos_sin = self.rotary_emb(x[:, :n])
mask = self.mask.to(x.device)
# use block-causal mask only during sampling
if sample_mode:
mask = mask[
n:n+x.shape[1], n:n+x.shape[1]]
else:
mask = None
rotary_cos_sin = self.rotary_emb(x)
with torch.cuda.amp.autocast(dtype=self.precision):
for i in range(len(self.blocks)):
x = self.blocks[i](x,
rotary_cos_sin,
c,
mask=mask,
sample_mode=sample_mode,
store_kv=store_kv)
if output_hidden_states:
all_hidden_states.append(x)
logits = self.output_layer(x, c)
if self.cross_attn and not sample_mode:
logits = logits[:, :n]
all_hidden_states = [hidden_states[:, :n] for hidden_states in all_hidden_states]
return logits, all_hidden_states
class BD3LM(transformers.PreTrainedModel):
"""HF-compatible model."""
config_class = BD3LMConfig
base_model_prefix = "bd3lm"
def __init__(
self,
config: BD3LMConfig):
super().__init__(config)
self.config = config
self.backbone = DITBackbone(config)
if config.var_min:
self.register_buffer(
'sampling_eps_min',
torch.tensor(config.sampling_eps_min))
self.register_buffer(
'sampling_eps_max',
torch.tensor(config.sampling_eps_max))
def reset_kv_cache(self):
for block in self.backbone.blocks:
block.kv_cache = None
def forward(
self,
input_ids: torch.LongTensor = None,
timesteps: torch.FloatTensor = None,
sample_mode: typing.Optional[bool] = None,
store_kv: typing.Optional[bool] = None,
output_hidden_states: typing.Optional[bool] = None,
return_dict: typing.Optional[bool] = None,
) -> typing.Union[
torch.Tensor, typing.Tuple,
modeling_outputs.MaskedLMOutput]:
"""HF-compatible forward method."""
if sample_mode:
assert self.config.attn_backend == 'sdpa', 'Sampling only supported with SDPA'
output_hidden_states = (
output_hidden_states
if output_hidden_states is not None
else self.config.output_hidden_states
)
return_dict = return_dict \
if return_dict is not None \
else self.config.use_return_dict
logits, all_hidden_states = self.backbone(
indices=input_ids,
sigma=timesteps,
sample_mode=sample_mode,
store_kv=store_kv,
output_hidden_states=output_hidden_states,
)
if return_dict:
return modeling_outputs.MaskedLMOutput(
logits=logits,
hidden_states=all_hidden_states if output_hidden_states else None,
loss=None
)
elif output_hidden_states:
return logits, all_hidden_states
else:
return logits