monai
medical
File size: 4,421 Bytes
ef02275
 
251565d
ef02275
251565d
bbaff61
058ac3a
95e82df
730ac49
94d37cc
93534f3
1cd32b1
e81f69d
25f3d4f
08f1d74
b018a29
b05ccb0
ef02275
 
 
e81f69d
 
ef02275
 
 
 
 
 
bbaff61
ef02275
 
 
 
 
 
 
 
 
 
730ac49
ef02275
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
{
    "schema": "https://github.com/Project-MONAI/MONAI-extra-test-data/releases/download/0.8.1/meta_schema_20220324.json",
    "version": "0.4.1",
    "changelog": {
        "0.4.1": "update params to supprot torch.jit.trace torchscript conversion",
        "0.4.0": "add name tag",
        "0.3.9": "use ITKreader to avoid mass logs at image loading",
        "0.3.8": "restructure readme to match updated template",
        "0.3.7": "Update metric in metadata",
        "0.3.6": "Update ckpt drive link",
        "0.3.5": "Update figure and benchmarking",
        "0.3.4": "Update figure link in readme",
        "0.3.3": "Update, verify MONAI 1.0.1 and Pytorch 1.13.0",
        "0.3.2": "enhance readme on commands example",
        "0.3.1": "fix license Copyright error",
        "0.3.0": "update license files",
        "0.2.0": "unify naming",
        "0.1.0": "complete the model package",
        "0.0.1": "initialize the model package structure"
    },
    "monai_version": "1.0.1",
    "pytorch_version": "1.13.0",
    "numpy_version": "1.21.2",
    "optional_packages_version": {
        "nibabel": "3.2.1",
        "pytorch-ignite": "0.4.8",
        "einops": "0.4.1"
    },
    "name": "Swin UNETR BTCV segmentation",
    "task": "BTCV multi-organ segmentation",
    "description": "A pre-trained model for volumetric (3D) multi-organ segmentation from CT image",
    "authors": "MONAI team",
    "copyright": "Copyright (c) MONAI Consortium",
    "data_source": "RawData.zip from https://www.synapse.org/#!Synapse:syn3193805/wiki/217752/",
    "data_type": "nibabel",
    "image_classes": "single channel data, intensity scaled to [0, 1]",
    "label_classes": "multi-channel data,0:background,1:spleen, 2:Right Kidney, 3:Left Kideny, 4:Gallbladder, 5:Esophagus, 6:Liver, 7:Stomach, 8:Aorta, 9:IVC, 10:Portal and Splenic Veins, 11:Pancreas, 12:Right adrenal gland, 13:Left adrenal gland",
    "pred_classes": "14 channels OneHot data, 0:background,1:spleen, 2:Right Kidney, 3:Left Kideny, 4:Gallbladder, 5:Esophagus, 6:Liver, 7:Stomach, 8:Aorta, 9:IVC, 10:Portal and Splenic Veins, 11:Pancreas, 12:Right adrenal gland, 13:Left adrenal gland",
    "eval_metrics": {
        "mean_dice": 0.8269
    },
    "intended_use": "This is an example, not to be used for diagnostic purposes",
    "references": [
        "Hatamizadeh, Ali, et al. 'Swin UNETR: Swin Transformers for Semantic Segmentation of Brain Tumors in MRI Images. arXiv preprint arXiv:2201.01266 (2022). https://arxiv.org/abs/2201.01266.",
        "Tang, Yucheng, et al. 'Self-supervised pre-training of swin transformers for 3d medical image analysis. arXiv preprint arXiv:2111.14791 (2021). https://arxiv.org/abs/2111.14791."
    ],
    "network_data_format": {
        "inputs": {
            "image": {
                "type": "image",
                "format": "hounsfield",
                "modality": "CT",
                "num_channels": 1,
                "spatial_shape": [
                    96,
                    96,
                    96
                ],
                "dtype": "float32",
                "value_range": [
                    0,
                    1
                ],
                "is_patch_data": true,
                "channel_def": {
                    "0": "image"
                }
            }
        },
        "outputs": {
            "pred": {
                "type": "image",
                "format": "segmentation",
                "num_channels": 14,
                "spatial_shape": [
                    96,
                    96,
                    96
                ],
                "dtype": "float32",
                "value_range": [
                    0,
                    1
                ],
                "is_patch_data": true,
                "channel_def": {
                    "0": "background",
                    "1": "spleen",
                    "2": "Right Kidney",
                    "3": "Left Kideny",
                    "4": "Gallbladder",
                    "5": "Esophagus",
                    "6": "Liver",
                    "7": "Stomach",
                    "8": "Aorta",
                    "9": "IVC",
                    "10": "Portal and Splenic Veins",
                    "11": "Pancreas",
                    "12": "Right adrenal gland",
                    "13": "Left adrenal gland"
                }
            }
        }
    }
}