layoutlmv3-cordv2-binary
Browse files- README.md +80 -0
- model.safetensors +1 -1
README.md
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: cc-by-nc-sa-4.0
|
3 |
+
base_model: microsoft/layoutlmv3-base
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- precision
|
8 |
+
- recall
|
9 |
+
- f1
|
10 |
+
- accuracy
|
11 |
+
model-index:
|
12 |
+
- name: layoutlmv3-cordv2-binary
|
13 |
+
results: []
|
14 |
+
---
|
15 |
+
|
16 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
17 |
+
should probably proofread and complete it, then remove this comment. -->
|
18 |
+
|
19 |
+
# layoutlmv3-cordv2-binary
|
20 |
+
|
21 |
+
This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on an unknown dataset.
|
22 |
+
It achieves the following results on the evaluation set:
|
23 |
+
- Loss: 0.0490
|
24 |
+
- Precision: 0.9529
|
25 |
+
- Recall: 0.9564
|
26 |
+
- F1: 0.9546
|
27 |
+
- Accuracy: 0.9941
|
28 |
+
|
29 |
+
## Model description
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Intended uses & limitations
|
34 |
+
|
35 |
+
More information needed
|
36 |
+
|
37 |
+
## Training and evaluation data
|
38 |
+
|
39 |
+
More information needed
|
40 |
+
|
41 |
+
## Training procedure
|
42 |
+
|
43 |
+
### Training hyperparameters
|
44 |
+
|
45 |
+
The following hyperparameters were used during training:
|
46 |
+
- learning_rate: 1e-05
|
47 |
+
- train_batch_size: 2
|
48 |
+
- eval_batch_size: 2
|
49 |
+
- seed: 42
|
50 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
51 |
+
- lr_scheduler_type: linear
|
52 |
+
- training_steps: 1500
|
53 |
+
|
54 |
+
### Training results
|
55 |
+
|
56 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
57 |
+
|:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
58 |
+
| No log | 0.3333 | 100 | 0.0970 | 0.7517 | 0.8145 | 0.7818 | 0.9788 |
|
59 |
+
| No log | 0.6667 | 200 | 0.0520 | 0.8715 | 0.9127 | 0.8917 | 0.9894 |
|
60 |
+
| No log | 1.0 | 300 | 0.0630 | 0.9143 | 0.9309 | 0.9225 | 0.9919 |
|
61 |
+
| No log | 1.3333 | 400 | 0.0459 | 0.925 | 0.9418 | 0.9333 | 0.9936 |
|
62 |
+
| 0.0764 | 1.6667 | 500 | 0.0540 | 0.9457 | 0.9491 | 0.9474 | 0.9936 |
|
63 |
+
| 0.0764 | 2.0 | 600 | 0.0395 | 0.9393 | 0.9564 | 0.9477 | 0.9945 |
|
64 |
+
| 0.0764 | 2.3333 | 700 | 0.0455 | 0.9457 | 0.9491 | 0.9474 | 0.9945 |
|
65 |
+
| 0.0764 | 2.6667 | 800 | 0.0490 | 0.9562 | 0.9527 | 0.9545 | 0.9941 |
|
66 |
+
| 0.0764 | 3.0 | 900 | 0.0422 | 0.9395 | 0.96 | 0.9496 | 0.9958 |
|
67 |
+
| 0.02 | 3.3333 | 1000 | 0.0524 | 0.9529 | 0.9564 | 0.9546 | 0.9941 |
|
68 |
+
| 0.02 | 3.6667 | 1100 | 0.0466 | 0.9529 | 0.9564 | 0.9546 | 0.9941 |
|
69 |
+
| 0.02 | 4.0 | 1200 | 0.0482 | 0.9568 | 0.9673 | 0.9620 | 0.9953 |
|
70 |
+
| 0.02 | 4.3333 | 1300 | 0.0444 | 0.9529 | 0.9564 | 0.9546 | 0.9941 |
|
71 |
+
| 0.02 | 4.6667 | 1400 | 0.0493 | 0.9529 | 0.9564 | 0.9546 | 0.9941 |
|
72 |
+
| 0.0103 | 5.0 | 1500 | 0.0490 | 0.9529 | 0.9564 | 0.9546 | 0.9941 |
|
73 |
+
|
74 |
+
|
75 |
+
### Framework versions
|
76 |
+
|
77 |
+
- Transformers 4.43.0.dev0
|
78 |
+
- Pytorch 2.3.0+cu121
|
79 |
+
- Datasets 2.20.0
|
80 |
+
- Tokenizers 0.19.1
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 501340144
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:93b52d28e2fa99e82e76e20313aa341b7ab1a98f5fd238bd6012e509facef3a9
|
3 |
size 501340144
|