Feature Extraction
Transformers
Safetensors
ModularStarEncoder
custom_code
andreagurioli1995 commited on
Commit
b53e15a
·
verified ·
1 Parent(s): a63a9cf

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +3 -3
README.md CHANGED
@@ -19,7 +19,7 @@ We built ModularStarEncoder on top of [StarCoder-2](https://huggingface.co/bigco
19
  The model is finetuned with [CLIP objective](https://github.com/mlfoundations/open_clip/blob/main/src/open_clip/loss.py).
20
  ModularStarEncoder fine-tuned works with instruction prompts; to get the most out of the model, embed the task in the input. The How to Use section below provides more details.
21
 
22
- - **Paper:** [One Model to Train them All: Hierarchical Self-Distillation for Enhanced Early Layer Embeddings](https://arxiv.org/abs/2503.03008)
23
  - **Languages:** English, Go, Ruby, Python, Java, C++, PHP, C, JavaScript
24
  - **Different sizes:** [Layer 4](https://huggingface.co/modularStarEncoder/ModularStarEncoder-finetuned-4), [Layer 9](https://huggingface.co/modularStarEncoder/ModularStarEncoder-finetuned-9), [Layer 18](https://huggingface.co/modularStarEncoder/ModularStarEncoder-finetuned-18), [Layer 27](https://huggingface.co/modularStarEncoder/ModularStarEncoder-finetuned-27), [Layer 36](https://huggingface.co/modularStarEncoder/ModularStarEncoder-finetuned)
25
 
@@ -101,8 +101,8 @@ The model is licensed under the BigCode OpenRAIL-M v1 license agreement. You can
101
 
102
  # Citation
103
  ```
104
- @article{gurioli2025modeltrainallhierarchical,
105
- title={One Model to Train them All: Hierarchical Self-Distillation for Enhanced Early Layer Embeddings},
106
  author={Andrea Gurioli and Federico Pennino and João Monteiro and Maurizio Gabbrielli},
107
  year={2025},
108
  eprint={2503.03008},
 
19
  The model is finetuned with [CLIP objective](https://github.com/mlfoundations/open_clip/blob/main/src/open_clip/loss.py).
20
  ModularStarEncoder fine-tuned works with instruction prompts; to get the most out of the model, embed the task in the input. The How to Use section below provides more details.
21
 
22
+ - **Paper:** [MoSE: Hierarchical Self-Distillation Enhances Early Layer Embeddings](https://arxiv.org/abs/2503.03008)
23
  - **Languages:** English, Go, Ruby, Python, Java, C++, PHP, C, JavaScript
24
  - **Different sizes:** [Layer 4](https://huggingface.co/modularStarEncoder/ModularStarEncoder-finetuned-4), [Layer 9](https://huggingface.co/modularStarEncoder/ModularStarEncoder-finetuned-9), [Layer 18](https://huggingface.co/modularStarEncoder/ModularStarEncoder-finetuned-18), [Layer 27](https://huggingface.co/modularStarEncoder/ModularStarEncoder-finetuned-27), [Layer 36](https://huggingface.co/modularStarEncoder/ModularStarEncoder-finetuned)
25
 
 
101
 
102
  # Citation
103
  ```
104
+ @article{gurioli2025mosehierarchicalselfdistillationenhances,
105
+ title={MoSE: Hierarchical Self-Distillation Enhances Early Layer Embeddings},
106
  author={Andrea Gurioli and Federico Pennino and João Monteiro and Maurizio Gabbrielli},
107
  year={2025},
108
  eprint={2503.03008},