--- license: apache-2.0 base_model: TinyLlama/TinyLlama-1.1B-Chat-v1.0 tags: - tinyllama - lora - peft - python - code - fine-tuning model_type: causal-lm library_name: transformers pipeline_tag: text-generation --- # 🐍 TinyLLaMA LoRA - Fine-tuned on Python Code This is a **LoRA fine-tuned version** of [`TinyLlama/TinyLlama-1.1B-Chat-v1.0`](https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v1.0) using a subset of Python code from the `codeparrot` dataset. It is trained to generate Python functions and code snippets based on natural language or code-based prompts. ## 🔧 Training Details - **Base model**: `TinyLlama/TinyLlama-1.1B-Chat-v1.0` - **Adapter type**: LoRA (PEFT) - **Dataset**: `codeparrot/codeparrot-clean-valid[:1000]` - **Tokenized max length**: 512 - **Trained on**: Apple M3 Pro (MPS backend) - **Epochs**: 1 - **Batch size**: 1 (with gradient accumulation) ## 💡 Example Usage ```python from transformers import AutoModelForCausalLM, AutoTokenizer from peft import PeftModel base_model = "TinyLlama/TinyLlama-1.1B-Chat-v1.0" adapter_model = "your-username/tinyllama-python-lora" tokenizer = AutoTokenizer.from_pretrained(base_model) model = AutoModelForCausalLM.from_pretrained(base_model) model = PeftModel.from_pretrained(model, adapter_model) prompt = "<|python|>\ndef fibonacci(n):" inputs = tokenizer(prompt, return_tensors="pt") outputs = model.generate(**inputs, max_new_tokens=100) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` ## 🧠 Intended Use Code completion for Python Teaching LLMs Python function structure Experimentation with LoRA on small code datasets ##⚠️ Limitations Trained on a small subset of data (1,000 samples) May hallucinate or generate syntactically incorrect code Not suitable for production use without further fine-tuning and evaluation ## 📜 License Apache 2.0 — same as the base model.