mnaguib commited on
Commit
88a760a
·
verified ·
1 Parent(s): 7453db0

Add new SentenceTransformer model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,455 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - de
4
+ - en
5
+ - es
6
+ - fr
7
+ - it
8
+ - nl
9
+ - pl
10
+ - pt
11
+ - ru
12
+ - zh
13
+ tags:
14
+ - sentence-transformers
15
+ - sentence-similarity
16
+ - feature-extraction
17
+ - generated_from_trainer
18
+ - dataset_size:5749
19
+ - loss:CosineSimilarityLoss
20
+ base_model: almanach/camembert-bio-base
21
+ widget:
22
+ - source_sentence: Nous nous déplaçons "... par rapport au cadre de repos cosmique
23
+ en mouvement ... à environ 371 km/s vers la constellation du Lion".
24
+ sentences:
25
+ - La dame a fait frire la viande panée dans de l'huile chaude.
26
+ - Il n'y a pas d'alambic qui ne soit pas relatif à un autre objet.
27
+ - Le joueur de basket-ball est sur le point de marquer des points pour son équipe.
28
+ - source_sentence: Le professeur Burkhauser a effectué des recherches approfondies
29
+ sur les personnes qui sont pénalisées par l'augmentation du salaire minimum.
30
+ sentences:
31
+ - Un adolescent parle à une fille par le biais d'une webcam.
32
+ - Une femme est en train de couper des oignons verts.
33
+ - Les lois sur le salaire minimum nuisent le plus aux personnes les moins qualifiées
34
+ et les moins productives.
35
+ - source_sentence: Bien que le terme "reine" puisse faire référence à la fois à la
36
+ reine régente (souveraine) ou à la reine consort, le roi a toujours été le souverain.
37
+ sentences:
38
+ - Des moutons paissent dans le champ devant une rangée d'arbres.
39
+ - Il y a une très bonne raison de ne pas appeler le conjoint de la Reine "Roi" -
40
+ parce qu'il n'est pas le Roi.
41
+ - Un groupe de personnes âgées pose autour d'une table à manger.
42
+ - source_sentence: Deux pygargues à tête blanche perchés sur une branche.
43
+ sentences:
44
+ - Un groupe de militaires joue dans un quintette de cuivres.
45
+ - Deux aigles sont perchés sur une branche.
46
+ - Un homme qui joue de la guitare sous la pluie.
47
+ - source_sentence: Un homme joue de la guitare.
48
+ sentences:
49
+ - Il est possible qu'un système solaire comme le nôtre existe en dehors d'une galaxie.
50
+ - Un homme joue de la flûte.
51
+ - Un homme est en train de manger une banane.
52
+ datasets:
53
+ - PhilipMay/stsb_multi_mt
54
+ pipeline_tag: sentence-similarity
55
+ library_name: sentence-transformers
56
+ metrics:
57
+ - pearson_cosine
58
+ - spearman_cosine
59
+ model-index:
60
+ - name: SentenceTransformer based on almanach/camembert-bio-base
61
+ results:
62
+ - task:
63
+ type: semantic-similarity
64
+ name: Semantic Similarity
65
+ dataset:
66
+ name: sts dev
67
+ type: sts-dev
68
+ metrics:
69
+ - type: pearson_cosine
70
+ value: 0.8588264123540028
71
+ name: Pearson Cosine
72
+ - type: spearman_cosine
73
+ value: 0.8581839538480059
74
+ name: Spearman Cosine
75
+ ---
76
+
77
+ # SentenceTransformer based on almanach/camembert-bio-base
78
+
79
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [almanach/camembert-bio-base](https://huggingface.co/almanach/camembert-bio-base) on the [stsb_multi_mt](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
80
+
81
+ ## Model Details
82
+
83
+ ### Model Description
84
+ - **Model Type:** Sentence Transformer
85
+ - **Base model:** [almanach/camembert-bio-base](https://huggingface.co/almanach/camembert-bio-base) <!-- at revision 8e2645c17960c80789e0b82006f45c17a36e94cc -->
86
+ - **Maximum Sequence Length:** 512 tokens
87
+ - **Output Dimensionality:** 768 dimensions
88
+ - **Similarity Function:** Cosine Similarity
89
+ - **Training Dataset:**
90
+ - [stsb_multi_mt](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt)
91
+ - **Languages:** de, en, es, fr, it, nl, pl, pt, ru, zh
92
+ <!-- - **License:** Unknown -->
93
+
94
+ ### Model Sources
95
+
96
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
97
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
98
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
99
+
100
+ ### Full Model Architecture
101
+
102
+ ```
103
+ SentenceTransformer(
104
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: CamembertModel
105
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
106
+ )
107
+ ```
108
+
109
+ ## Usage
110
+
111
+ ### Direct Usage (Sentence Transformers)
112
+
113
+ First install the Sentence Transformers library:
114
+
115
+ ```bash
116
+ pip install -U sentence-transformers
117
+ ```
118
+
119
+ Then you can load this model and run inference.
120
+ ```python
121
+ from sentence_transformers import SentenceTransformer
122
+
123
+ # Download from the 🤗 Hub
124
+ model = SentenceTransformer("mnaguib/sentence-camembert-bio")
125
+ # Run inference
126
+ sentences = [
127
+ 'Un homme joue de la guitare.',
128
+ 'Un homme est en train de manger une banane.',
129
+ 'Un homme joue de la flûte.',
130
+ ]
131
+ embeddings = model.encode(sentences)
132
+ print(embeddings.shape)
133
+ # [3, 768]
134
+
135
+ # Get the similarity scores for the embeddings
136
+ similarities = model.similarity(embeddings, embeddings)
137
+ print(similarities.shape)
138
+ # [3, 3]
139
+ ```
140
+
141
+ <!--
142
+ ### Direct Usage (Transformers)
143
+
144
+ <details><summary>Click to see the direct usage in Transformers</summary>
145
+
146
+ </details>
147
+ -->
148
+
149
+ <!--
150
+ ### Downstream Usage (Sentence Transformers)
151
+
152
+ You can finetune this model on your own dataset.
153
+
154
+ <details><summary>Click to expand</summary>
155
+
156
+ </details>
157
+ -->
158
+
159
+ <!--
160
+ ### Out-of-Scope Use
161
+
162
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
163
+ -->
164
+
165
+ ## Evaluation
166
+
167
+ ### Metrics
168
+
169
+ #### Semantic Similarity
170
+
171
+ * Dataset: `sts-dev`
172
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
173
+
174
+ | Metric | Value |
175
+ |:--------------------|:-----------|
176
+ | pearson_cosine | 0.8588 |
177
+ | **spearman_cosine** | **0.8582** |
178
+
179
+ <!--
180
+ ## Bias, Risks and Limitations
181
+
182
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
183
+ -->
184
+
185
+ <!--
186
+ ### Recommendations
187
+
188
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
189
+ -->
190
+
191
+ ## Training Details
192
+
193
+ ### Training Dataset
194
+
195
+ #### stsb_multi_mt
196
+
197
+ * Dataset: [stsb_multi_mt](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt) at [3acaa3d](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt/tree/3acaa3dd8c91649e0b8e627ffad891f059e47c8c)
198
+ * Size: 5,749 training samples
199
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
200
+ * Approximate statistics based on the first 1000 samples:
201
+ | | sentence1 | sentence2 | score |
202
+ |:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
203
+ | type | string | string | float |
204
+ | details | <ul><li>min: 6 tokens</li><li>mean: 11.1 tokens</li><li>max: 30 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 11.04 tokens</li><li>max: 26 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.45</li><li>max: 1.0</li></ul> |
205
+ * Samples:
206
+ | sentence1 | sentence2 | score |
207
+ |:-----------------------------------------------------------|:---------------------------------------------------------------------|:--------------------------------|
208
+ | <code>Un avion est en train de décoller.</code> | <code>Un avion est en train de décoller.</code> | <code>1.0</code> |
209
+ | <code>Un homme joue d'une grande flûte.</code> | <code>Un homme joue de la flûte.</code> | <code>0.7599999904632568</code> |
210
+ | <code>Un homme étale du fromage râpé sur une pizza.</code> | <code>Un homme étale du fromage râpé sur une pizza non cuite.</code> | <code>0.7599999904632568</code> |
211
+ * Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
212
+ ```json
213
+ {
214
+ "loss_fct": "torch.nn.modules.loss.MSELoss"
215
+ }
216
+ ```
217
+
218
+ ### Evaluation Dataset
219
+
220
+ #### stsb_multi_mt
221
+
222
+ * Dataset: [stsb_multi_mt](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt) at [3acaa3d](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt/tree/3acaa3dd8c91649e0b8e627ffad891f059e47c8c)
223
+ * Size: 1,500 evaluation samples
224
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
225
+ * Approximate statistics based on the first 1000 samples:
226
+ | | sentence1 | sentence2 | score |
227
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
228
+ | type | string | string | float |
229
+ | details | <ul><li>min: 6 tokens</li><li>mean: 17.45 tokens</li><li>max: 52 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 17.35 tokens</li><li>max: 48 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.42</li><li>max: 1.0</li></ul> |
230
+ * Samples:
231
+ | sentence1 | sentence2 | score |
232
+ |:-------------------------------------------------------------------------|:----------------------------------------------------------------------------|:-------------------------------|
233
+ | <code>Un homme avec un casque de sécurité est en train de danser.</code> | <code>Un homme portant un casque de sécurité est en train de danser.</code> | <code>1.0</code> |
234
+ | <code>Un jeune enfant monte à cheval.</code> | <code>Un enfant monte à cheval.</code> | <code>0.949999988079071</code> |
235
+ | <code>Un homme donne une souris à un serpent.</code> | <code>L'homme donne une souris au serpent.</code> | <code>1.0</code> |
236
+ * Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
237
+ ```json
238
+ {
239
+ "loss_fct": "torch.nn.modules.loss.MSELoss"
240
+ }
241
+ ```
242
+
243
+ ### Training Hyperparameters
244
+ #### Non-Default Hyperparameters
245
+
246
+ - `eval_strategy`: steps
247
+ - `per_device_train_batch_size`: 64
248
+ - `per_device_eval_batch_size`: 16
249
+ - `learning_rate`: 0.0001
250
+ - `num_train_epochs`: 7
251
+ - `warmup_ratio`: 0.1
252
+ - `fp16`: True
253
+ - `load_best_model_at_end`: True
254
+
255
+ #### All Hyperparameters
256
+ <details><summary>Click to expand</summary>
257
+
258
+ - `overwrite_output_dir`: False
259
+ - `do_predict`: False
260
+ - `eval_strategy`: steps
261
+ - `prediction_loss_only`: True
262
+ - `per_device_train_batch_size`: 64
263
+ - `per_device_eval_batch_size`: 16
264
+ - `per_gpu_train_batch_size`: None
265
+ - `per_gpu_eval_batch_size`: None
266
+ - `gradient_accumulation_steps`: 1
267
+ - `eval_accumulation_steps`: None
268
+ - `torch_empty_cache_steps`: None
269
+ - `learning_rate`: 0.0001
270
+ - `weight_decay`: 0.0
271
+ - `adam_beta1`: 0.9
272
+ - `adam_beta2`: 0.999
273
+ - `adam_epsilon`: 1e-08
274
+ - `max_grad_norm`: 1.0
275
+ - `num_train_epochs`: 7
276
+ - `max_steps`: -1
277
+ - `lr_scheduler_type`: linear
278
+ - `lr_scheduler_kwargs`: {}
279
+ - `warmup_ratio`: 0.1
280
+ - `warmup_steps`: 0
281
+ - `log_level`: passive
282
+ - `log_level_replica`: warning
283
+ - `log_on_each_node`: True
284
+ - `logging_nan_inf_filter`: True
285
+ - `save_safetensors`: True
286
+ - `save_on_each_node`: False
287
+ - `save_only_model`: False
288
+ - `restore_callback_states_from_checkpoint`: False
289
+ - `no_cuda`: False
290
+ - `use_cpu`: False
291
+ - `use_mps_device`: False
292
+ - `seed`: 42
293
+ - `data_seed`: None
294
+ - `jit_mode_eval`: False
295
+ - `use_ipex`: False
296
+ - `bf16`: False
297
+ - `fp16`: True
298
+ - `fp16_opt_level`: O1
299
+ - `half_precision_backend`: auto
300
+ - `bf16_full_eval`: False
301
+ - `fp16_full_eval`: False
302
+ - `tf32`: None
303
+ - `local_rank`: 0
304
+ - `ddp_backend`: None
305
+ - `tpu_num_cores`: None
306
+ - `tpu_metrics_debug`: False
307
+ - `debug`: []
308
+ - `dataloader_drop_last`: False
309
+ - `dataloader_num_workers`: 0
310
+ - `dataloader_prefetch_factor`: None
311
+ - `past_index`: -1
312
+ - `disable_tqdm`: False
313
+ - `remove_unused_columns`: True
314
+ - `label_names`: None
315
+ - `load_best_model_at_end`: True
316
+ - `ignore_data_skip`: False
317
+ - `fsdp`: []
318
+ - `fsdp_min_num_params`: 0
319
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
320
+ - `fsdp_transformer_layer_cls_to_wrap`: None
321
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
322
+ - `deepspeed`: None
323
+ - `label_smoothing_factor`: 0.0
324
+ - `optim`: adamw_torch
325
+ - `optim_args`: None
326
+ - `adafactor`: False
327
+ - `group_by_length`: False
328
+ - `length_column_name`: length
329
+ - `ddp_find_unused_parameters`: None
330
+ - `ddp_bucket_cap_mb`: None
331
+ - `ddp_broadcast_buffers`: False
332
+ - `dataloader_pin_memory`: True
333
+ - `dataloader_persistent_workers`: False
334
+ - `skip_memory_metrics`: True
335
+ - `use_legacy_prediction_loop`: False
336
+ - `push_to_hub`: False
337
+ - `resume_from_checkpoint`: None
338
+ - `hub_model_id`: None
339
+ - `hub_strategy`: every_save
340
+ - `hub_private_repo`: None
341
+ - `hub_always_push`: False
342
+ - `gradient_checkpointing`: False
343
+ - `gradient_checkpointing_kwargs`: None
344
+ - `include_inputs_for_metrics`: False
345
+ - `include_for_metrics`: []
346
+ - `eval_do_concat_batches`: True
347
+ - `fp16_backend`: auto
348
+ - `push_to_hub_model_id`: None
349
+ - `push_to_hub_organization`: None
350
+ - `mp_parameters`:
351
+ - `auto_find_batch_size`: False
352
+ - `full_determinism`: False
353
+ - `torchdynamo`: None
354
+ - `ray_scope`: last
355
+ - `ddp_timeout`: 1800
356
+ - `torch_compile`: False
357
+ - `torch_compile_backend`: None
358
+ - `torch_compile_mode`: None
359
+ - `dispatch_batches`: None
360
+ - `split_batches`: None
361
+ - `include_tokens_per_second`: False
362
+ - `include_num_input_tokens_seen`: False
363
+ - `neftune_noise_alpha`: None
364
+ - `optim_target_modules`: None
365
+ - `batch_eval_metrics`: False
366
+ - `eval_on_start`: False
367
+ - `use_liger_kernel`: False
368
+ - `eval_use_gather_object`: False
369
+ - `average_tokens_across_devices`: False
370
+ - `prompts`: None
371
+ - `batch_sampler`: batch_sampler
372
+ - `multi_dataset_batch_sampler`: proportional
373
+
374
+ </details>
375
+
376
+ ### Training Logs
377
+ | Epoch | Step | Training Loss | Validation Loss | sts-dev_spearman_cosine |
378
+ |:----------:|:-------:|:-------------:|:---------------:|:-----------------------:|
379
+ | 0.2222 | 10 | - | 0.1407 | 0.6900 |
380
+ | 0.4444 | 20 | - | 0.0426 | 0.7853 |
381
+ | 0.6667 | 30 | - | 0.0368 | 0.8058 |
382
+ | 0.8889 | 40 | - | 0.0319 | 0.8337 |
383
+ | 1.1111 | 50 | - | 0.0314 | 0.8308 |
384
+ | 1.3333 | 60 | - | 0.0304 | 0.8365 |
385
+ | 1.5556 | 70 | - | 0.0300 | 0.8443 |
386
+ | 1.7778 | 80 | - | 0.0306 | 0.8439 |
387
+ | 2.0 | 90 | - | 0.0285 | 0.8488 |
388
+ | 2.2222 | 100 | 0.0452 | 0.0290 | 0.8488 |
389
+ | 2.4444 | 110 | - | 0.0297 | 0.8474 |
390
+ | 2.6667 | 120 | - | 0.0277 | 0.8541 |
391
+ | 2.8889 | 130 | - | 0.0295 | 0.8521 |
392
+ | 3.1111 | 140 | - | 0.0280 | 0.8533 |
393
+ | 3.3333 | 150 | - | 0.0286 | 0.8520 |
394
+ | 3.5556 | 160 | - | 0.0272 | 0.8547 |
395
+ | 3.7778 | 170 | - | 0.0285 | 0.8528 |
396
+ | 4.0 | 180 | - | 0.0288 | 0.8543 |
397
+ | 4.2222 | 190 | - | 0.0282 | 0.8561 |
398
+ | 4.4444 | 200 | 0.0098 | 0.0280 | 0.8546 |
399
+ | 4.6667 | 210 | - | 0.0276 | 0.8565 |
400
+ | 4.8889 | 220 | - | 0.0272 | 0.8549 |
401
+ | 5.1111 | 230 | - | 0.0280 | 0.8551 |
402
+ | **5.3333** | **240** | **-** | **0.0269** | **0.8583** |
403
+ | 5.5556 | 250 | - | 0.0272 | 0.8574 |
404
+ | 5.7778 | 260 | - | 0.0272 | 0.8563 |
405
+ | 6.0 | 270 | - | 0.0276 | 0.8575 |
406
+ | 6.2222 | 280 | - | 0.0274 | 0.8584 |
407
+ | 6.4444 | 290 | - | 0.0270 | 0.8582 |
408
+ | 6.6667 | 300 | 0.0051 | 0.0271 | 0.8581 |
409
+ | 6.8889 | 310 | - | 0.0271 | 0.8582 |
410
+
411
+ * The bold row denotes the saved checkpoint.
412
+
413
+ ### Framework Versions
414
+ - Python: 3.12.8
415
+ - Sentence Transformers: 3.4.1
416
+ - Transformers: 4.47.1
417
+ - PyTorch: 2.5.1+cu124
418
+ - Accelerate: 1.4.0
419
+ - Datasets: 3.2.0
420
+ - Tokenizers: 0.21.0
421
+
422
+ ## Citation
423
+
424
+ ### BibTeX
425
+
426
+ #### Sentence Transformers
427
+ ```bibtex
428
+ @inproceedings{reimers-2019-sentence-bert,
429
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
430
+ author = "Reimers, Nils and Gurevych, Iryna",
431
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
432
+ month = "11",
433
+ year = "2019",
434
+ publisher = "Association for Computational Linguistics",
435
+ url = "https://arxiv.org/abs/1908.10084",
436
+ }
437
+ ```
438
+
439
+ <!--
440
+ ## Glossary
441
+
442
+ *Clearly define terms in order to be accessible across audiences.*
443
+ -->
444
+
445
+ <!--
446
+ ## Model Card Authors
447
+
448
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
449
+ -->
450
+
451
+ <!--
452
+ ## Model Card Contact
453
+
454
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
455
+ -->
config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "almanach/camembert-bio-base",
3
+ "architectures": [
4
+ "CamembertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 5,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 6,
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.1,
12
+ "hidden_size": 768,
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 3072,
15
+ "layer_norm_eps": 1e-05,
16
+ "max_position_embeddings": 514,
17
+ "model_type": "camembert",
18
+ "num_attention_heads": 12,
19
+ "num_hidden_layers": 12,
20
+ "output_past": true,
21
+ "pad_token_id": 1,
22
+ "position_embedding_type": "absolute",
23
+ "torch_dtype": "float32",
24
+ "transformers_version": "4.47.1",
25
+ "type_vocab_size": 1,
26
+ "use_cache": true,
27
+ "vocab_size": 32005
28
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.4.1",
4
+ "transformers": "4.47.1",
5
+ "pytorch": "2.5.1+cu124"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6e4a87a73b8eee61b93b2f41a2ddb12be9e99ec8219374f47b33247a624f2262
3
+ size 442510176
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
sentencepiece.bpe.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:988bc5a00281c6d210a5d34bd143d0363741a432fefe741bf71e61b1869d4314
3
+ size 810912
special_tokens_map.json ADDED
@@ -0,0 +1,56 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<s>NOTUSED",
4
+ "</s>NOTUSED",
5
+ "<unk>NOTUSED"
6
+ ],
7
+ "bos_token": {
8
+ "content": "<s>",
9
+ "lstrip": false,
10
+ "normalized": false,
11
+ "rstrip": false,
12
+ "single_word": false
13
+ },
14
+ "cls_token": {
15
+ "content": "<s>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false
20
+ },
21
+ "eos_token": {
22
+ "content": "</s>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false
27
+ },
28
+ "mask_token": {
29
+ "content": "<mask>",
30
+ "lstrip": true,
31
+ "normalized": false,
32
+ "rstrip": false,
33
+ "single_word": false
34
+ },
35
+ "pad_token": {
36
+ "content": "<pad>",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false
41
+ },
42
+ "sep_token": {
43
+ "content": "</s>",
44
+ "lstrip": false,
45
+ "normalized": false,
46
+ "rstrip": false,
47
+ "single_word": false
48
+ },
49
+ "unk_token": {
50
+ "content": "<unk>",
51
+ "lstrip": false,
52
+ "normalized": false,
53
+ "rstrip": false,
54
+ "single_word": false
55
+ }
56
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,84 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>NOTUSED",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>NOTUSED",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "4": {
36
+ "content": "<unk>NOTUSED",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ },
43
+ "5": {
44
+ "content": "<s>",
45
+ "lstrip": false,
46
+ "normalized": false,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": true
50
+ },
51
+ "6": {
52
+ "content": "</s>",
53
+ "lstrip": false,
54
+ "normalized": false,
55
+ "rstrip": false,
56
+ "single_word": false,
57
+ "special": true
58
+ },
59
+ "32004": {
60
+ "content": "<mask>",
61
+ "lstrip": true,
62
+ "normalized": false,
63
+ "rstrip": false,
64
+ "single_word": false,
65
+ "special": true
66
+ }
67
+ },
68
+ "additional_special_tokens": [
69
+ "<s>NOTUSED",
70
+ "</s>NOTUSED",
71
+ "<unk>NOTUSED"
72
+ ],
73
+ "bos_token": "<s>",
74
+ "clean_up_tokenization_spaces": true,
75
+ "cls_token": "<s>",
76
+ "eos_token": "</s>",
77
+ "extra_special_tokens": {},
78
+ "mask_token": "<mask>",
79
+ "model_max_length": 512,
80
+ "pad_token": "<pad>",
81
+ "sep_token": "</s>",
82
+ "tokenizer_class": "CamembertTokenizer",
83
+ "unk_token": "<unk>"
84
+ }