import enum import math from collections import OrderedDict from dataclasses import dataclass from typing import Any, Literal, NamedTuple, Optional, Union import mlx.core as mx import mlx.nn as nn from .base import BaseModelArgs, create_attention_mask def _is_first_token(mask: mx.array) -> mx.array: assert mask.dtype == mx.bool_ # type: ignore B, Nh, q_len, kv_len = mask.shape mask = mask[:, :, :, -q_len:] cont = q_len != kv_len v = False if cont else True out = mx.logical_not(mx.diagonal(mask, offset=-1, axis1=-2, axis2=-1).astype(mx.bool_)) # type: ignore out = mx.concatenate([mx.full(shape=(B, Nh, 1), dtype=mx.bool_, vals=v), out], axis=-1) # type: ignore return out def _swiglu(h: mx.array) -> mx.array: size = h.shape[-1] chunks = 2 _current_idx = 0 split_sizes = [] for i in range(chunks - 1): _current_idx += size // chunks + (1 if i < size % chunks else 0) split_sizes.append(_current_idx) hs = mx.split(h, split_sizes, axis=-1) return nn.silu(hs[0]) * hs[1] class RotaryEmbedding(nn.Module): def __init__(self, dim: int, max_position_embeddings: int = 2048, base: int = 10000) -> None: super().__init__() self.dim = dim self.max_position_embeddings = max_position_embeddings self.base = base inv_freq = 1.0 / (self.base ** (mx.arange(0, self.dim, 2).astype(mx.float32) / self.dim)) self._inv_freq = inv_freq # Build here to make `torch.jit.trace` work. self._set_cos_sin_cache(seq_len=max_position_embeddings, dtype=mx.float32) def _set_cos_sin_cache(self, seq_len: int, dtype: Any) -> None: self.max_seq_len_cached = seq_len t = mx.arange(self.max_seq_len_cached, dtype=self._inv_freq.dtype) # type: ignore freqs = mx.einsum("i,j->ij", t, self._inv_freq) # Different from paper, but it uses a different permutation in order to obtain the same calculation emb = mx.concatenate([freqs, freqs], axis=-1) self._cos_cached = emb.cos()[None, None, :, :].astype(mx.float32) self._sin_cached = emb.sin()[None, None, :, :].astype(mx.float32) def __call__(self, x: mx.array, seq_len: int) -> tuple[mx.array, mx.array]: # x: [bs, num_attention_heads, seq_len, head_size] if seq_len > self.max_seq_len_cached: self._set_cos_sin_cache(seq_len=seq_len, dtype=x.dtype) return ( self._cos_cached[:, :, :seq_len, ...].astype(x.dtype), # type: ignore self._sin_cached[:, :, :seq_len, ...].astype(x.dtype), # type: ignore ) def _rotate_half(x: mx.array) -> mx.array: """Rotates half the hidden dims of the input.""" x1 = x[..., : x.shape[-1] // 2] x2 = x[..., x.shape[-1] // 2 :] return mx.concatenate([-x2, x1], axis=-1) def _rotary_pos_emb(x: mx.array, cos: mx.array, sin: mx.array, position_ids: mx.array) -> mx.array: # The first two dimensions of cos and sin are always 1, so we can `squeeze` them. cos = cos.squeeze(1).squeeze(0) # [seq_len, dim] sin = sin.squeeze(1).squeeze(0) # [seq_len, dim] cos = mx.expand_dims(cos[position_ids], 1) # [bs, 1, seq_len, dim] sin = mx.expand_dims(sin[position_ids], 1) # [bs, 1, seq_len, dim] x_embed = (x * cos) + (_rotate_half(x) * sin) return x_embed class LinearType(str, enum.Enum): Normal = "normal" Fp8 = "fp8" Fp8Retain = "fp8-retain" @dataclass class ModelArgs(BaseModelArgs): # type: ignore model_type: str = "plamo2" def __init__( self, hidden_size: int = 4096, num_hidden_layers: int = 32, rms_norm_eps: float = 1e-6, tie_word_embeddings: bool = True, # Attention num_attention_heads: int = 32, num_key_value_heads: int = 4, hidden_size_per_head: int = 128, max_position_embeddings: int = 2048, attention_window_size: int = 2048, full_attention_idx: list[int] | None = None, # Mamba mamba_d_state: int = 64, mamba_d_conv: int = 4, mamba_num_heads: int = 64, mamba_step: int = 2, mamba_chunk_size: int = 256, mamba_enabled: bool = True, # MLP intermediate_size: int = 13312, # Tokenizer vocab_size: int = 32000, tokenizer_class: str = "PlamoTokenizer", pad_token_id: Optional[int] = None, bos_token_id: int = 1, eos_token_id: int = 2, # Multimodal image_token_id: Optional[int] = None, image_feature_size: Optional[int] = None, image_proj_type: Literal["linear", "mlp"] = "linear", # FP8 linear_type: LinearType = LinearType.Normal, fp8_accum_dtype: Optional[str] = None, # Evaluation eval_attention_n_bit: Optional[int] = None, eval_mlp_n_bit: Optional[int] = None, use_cache: bool = True, **kwargs: Any, ) -> None: # max_position_embeddings is often used to determine the max length during inference, # but samba should have extrapolation abilities self.max_position_embeddings = max(10 * 1024 * 1024, max_position_embeddings) self.hidden_size = hidden_size self.rms_norm_eps = rms_norm_eps self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.hidden_size_per_head = hidden_size_per_head self.num_key_value_heads = num_key_value_heads self.attention_window_size = attention_window_size self.full_attention_idx = full_attention_idx if full_attention_idx is not None else [] self.mamba_d_state = mamba_d_state self.mamba_d_conv = mamba_d_conv self.mamba_num_heads = mamba_num_heads self.mamba_step = mamba_step self.mamba_chunk_size = mamba_chunk_size self.mamba_enabled = mamba_enabled self.intermediate_size = intermediate_size self.vocab_size = vocab_size self.image_token_id = image_token_id self.image_feature_size = image_feature_size self.image_proj_type = image_proj_type self.linear_type = linear_type self.fp8_accum_dtype = fp8_accum_dtype self.eval_attention_n_bit = eval_attention_n_bit self.eval_mlp_n_bit = eval_mlp_n_bit self.use_cache = use_cache # fields for vLLM self.sliding_window = attention_window_size self.tokenizer_class = tokenizer_class self.pad_token_id = pad_token_id self.bos_token_id = bos_token_id self.eos_token_id = eos_token_id self.tie_word_embeddings = tie_word_embeddings # From PretrainedConfig of transformers self.use_return_dict = kwargs.pop("use_return_dict", True) self.output_attentions = kwargs.pop("output_attentions", False) self.output_hidden_states = kwargs.pop("output_hidden_states", False) class PlamoAttentionCache(nn.Module): def __init__(self, key: mx.array, value: mx.array) -> None: super().__init__() B, nh, L, c = key.shape assert len(value.shape) == 4 assert value.shape[0] == B assert value.shape[2] == L self.key = key self.value = value class PlamoMambaCache(nn.Module): def __init__(self, conv_state: mx.array, ssm_state: mx.array) -> None: super().__init__() # conv_state: [B, C, d_conv] # ssm_state: [B, nhead, nchanel_per_head, d_state] assert len(conv_state.shape) == 3 assert len(ssm_state.shape) == 4 assert conv_state.shape[0] == ssm_state.shape[0] self.conv_state = conv_state self.ssm_state = ssm_state PlamoLayerCache = PlamoAttentionCache | PlamoMambaCache class PlamoCache(nn.Module): """ stores states of the model for fast decoding. `transformers` uses `transformers.Cache` for this purpose, but the interface and variable names are deeply dependent on Transformers architecture (e.g., `key_states`) and it is difficult to use other architectures (e.g., Mamba). This class provides a similar interface to `transformers.Cache`, but is designed to also handle the state of Mamba properly. """ def __init__(self, config: ModelArgs) -> None: super().__init__() self.config = config self.cache: list[Optional[PlamoLayerCache]] = [None for _ in range(config.num_hidden_layers)] def append_kv(self, key: mx.array, value: mx.array, layer_idx: int) -> tuple[mx.array, mx.array]: c = self.cache[layer_idx] if c is None: return key, value assert isinstance(c, PlamoAttentionCache) def _validate(cache: mx.array, new_tensor: mx.array) -> None: assert len(cache.shape) == 4 assert len(new_tensor.shape) == 4 assert cache.shape[0] == new_tensor.shape[0] assert cache.shape[1] == new_tensor.shape[1] assert cache.shape[3] == new_tensor.shape[3] _validate(c.key, key) _validate(c.value, value) assert key.shape[2] == value.shape[2] return mx.concatenate([c.key, key], axis=2), mx.concatenate([c.value, value], axis=2) def update_attention(self, key_states: mx.array, value_states: mx.array, layer_idx: int) -> PlamoAttentionCache: full_attn = layer_idx in self.config.full_attention_idx window_size = self.config.attention_window_size if self.cache[layer_idx] is None: if full_attn: self.cache[layer_idx] = PlamoAttentionCache(key_states, value_states) else: self.cache[layer_idx] = PlamoAttentionCache( key_states[:, :, -window_size:, :], value_states[:, :, -window_size:, :], ) else: c = self.cache[layer_idx] assert isinstance(c, PlamoAttentionCache) k, v = self.append_kv(key_states, value_states, layer_idx) if full_attn: c.key = k c.value = v else: c.key = k[:, :, -window_size:, :] c.value = v[:, :, -window_size:, :] self.cache[layer_idx] = c return self.cache[layer_idx] # type: ignore def update_mamba(self, conv_state: mx.array, ssm_state: mx.array, layer_idx: int) -> PlamoMambaCache: if self.cache[layer_idx] is None: self.cache[layer_idx] = PlamoMambaCache(conv_state, ssm_state) else: c = self.cache[layer_idx] assert isinstance(c, PlamoMambaCache) assert c.conv_state.shape == conv_state.shape assert c.ssm_state.shape == ssm_state.shape c.conv_state = conv_state c.ssm_state = ssm_state return self.cache[layer_idx] # type: ignore def __getitem__(self, layer_idx: int) -> PlamoLayerCache | None: assert layer_idx < len(self.cache) layer_cache = self.cache[layer_idx] return layer_cache # type: ignore @property def state(self): return self.cache @state.setter def state(self, v): self.cache = v def __len__(self) -> int: return len(self.cache) def get_seq_length(self, layer_idx: Optional[int] = None) -> int: if layer_idx is not None: c = self.cache[layer_idx] assert isinstance(c, PlamoAttentionCache) return c.key.shape[2] # type: ignore sequence_length: int = 0 for layer_cache in self.cache: if isinstance(layer_cache, PlamoAttentionCache): sequence_length = ( max(layer_cache.key.shape[2], sequence_length) if sequence_length is not None else layer_cache.key.shape[2] ) return sequence_length def get_max_length(self) -> int | None: return None def get_usable_length(self, new_seq_length: int, layer_idx: Optional[int] = 0) -> int: """Given the sequence length of the new inputs, returns the usable length of the cache.""" # Cache without size limit -> all cache is usable # Cache with size limit -> if the length cache plus the length of the new inputs is larger the maximum cache # length, we will need to evict part of the cache (and thus not all cache is usable) max_length = self.get_max_length() previous_seq_length = self.get_seq_length(layer_idx) if max_length is not None and previous_seq_length + new_seq_length > max_length: return max_length - new_seq_length return previous_seq_length def reorder_cache(self, beam_idx: mx.array) -> None: def _mamba(cache: PlamoMambaCache) -> PlamoMambaCache: return PlamoMambaCache( conv_state=mx.take(cache.conv_state, beam_idx, axis=0), ssm_state=mx.take(cache.ssm_state, beam_idx, axis=0), ) def _attention(cache: PlamoAttentionCache) -> PlamoAttentionCache: return PlamoAttentionCache( key=mx.take(cache.key, beam_idx, axis=0), value=mx.take(cache.value, beam_idx, axis=0), ) for i in range(len(self.cache)): if self.cache[i] is None: continue layer_cache = self.cache[i] if isinstance(layer_cache, PlamoMambaCache): self.cache[i] = _mamba(layer_cache) else: assert isinstance(layer_cache, PlamoAttentionCache) self.cache[i] = _attention(layer_cache) @property def seen_tokens(self) -> int | None: return None class DecoderInput(NamedTuple): hidden_states: mx.array attention_mask: Optional[mx.array] = None past_states: Optional[PlamoCache] = None output_hidden_states: Optional[bool] = False output_attentions: Optional[bool] = False gradient_checkpointing: bool = False input_ids: Optional[mx.array] = None class DecoderOutput(NamedTuple): hidden_states: mx.array all_hidden_states: Optional[tuple[mx.array, ...]] all_self_attns: Optional[tuple[mx.array, ...]] # Copied from transformers.models.bart.modeling_bart._make_causal_mask def _make_causal_mask(input_ids_shape: tuple[int, int], dtype: mx.Dtype, past_key_values_length: int = 0) -> mx.array: """ Make causal mask used for bi-directional self-attention. """ bsz, tgt_len = input_ids_shape mask = mx.full((tgt_len, tgt_len), float("-inf")) mask_cond = mx.arange(mask.shape[-1]) mask = mx.where(mask_cond < (mask_cond + 1).reshape((mask.shape[-1], 1)), 0, mask) mask = mask.astype(dtype) if past_key_values_length > 0: mask = mx.concatenate([mx.zeros((tgt_len, past_key_values_length), dtype=dtype), mask], axis=-1) return mx.broadcast_to(mask[None, None, :, :], (bsz, 1, tgt_len, tgt_len + past_key_values_length)) # Copied from transformers.models.bart.modeling_bart._expand_mask def _expand_mask(mask: mx.array, dtype: mx.Dtype, tgt_len: Optional[int] = None) -> mx.array: """ Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`. """ bsz, src_len = mask.shape tgt_len = tgt_len if tgt_len is not None else src_len expanded_mask = mx.broadcast_to(mask[:, None, None, :], (bsz, 1, tgt_len, src_len)).astype(dtype) inverted_mask = 1.0 - expanded_mask return mx.where(inverted_mask.astype(mx.bool_), float("-inf"), inverted_mask) # type: ignore def _rms_norm(hidden_states: mx.array, weight: Optional[mx.array], eps: float, offset: float = 1.0) -> mx.array: input_dtype = hidden_states.dtype hidden_states = hidden_states.astype(mx.float32) variance = mx.power(hidden_states, 2).mean(-1, keepdims=True) hidden_states = hidden_states * mx.rsqrt(variance + eps) hidden_states = hidden_states.astype(input_dtype) if weight is not None: hidden_states = (offset + weight) * hidden_states return hidden_states class RMSNorm(nn.Module): def __init__( self, hidden_size: int, eps: float = 1e-6, offset: float = 1.0, ) -> None: super().__init__() self.weight = mx.zeros(hidden_size) self.variance_epsilon = eps self.offset = offset def __call__(self, hidden_states: mx.array) -> mx.array: return _rms_norm(hidden_states, self.weight, self.variance_epsilon, offset=self.offset) def get_initial_dt_bias(num_heads: int) -> mx.array: dt_min = 0.001 dt_max = 0.1 dt = mx.exp(mx.random.uniform(shape=(num_heads,)) * (math.log(dt_max) - math.log(dt_min)) + math.log(dt_min)) dt = mx.clip(dt, a_min=1e-4, a_max=None) inv_dt = dt + mx.log(-mx.expm1(-dt)) return inv_dt def get_initial_A(num_heads: int) -> mx.array: A = mx.arange(1, num_heads + 1, dtype=mx.float32) return mx.log(A) def selective_state_update_ref( state, x, dt, A, B, C, D=None, z=None, dt_bias=None, dt_softplus=False ) -> tuple[mx.array, mx.array]: """ Argument: state: (batch, dim, dstate) or (batch, nheads, dim, dstate) x: (batch, dim) or (batch, nheads, dim) dt: (batch, dim) or (batch, nheads, dim) A: (dim, dstate) or (nheads, dim, dstate) B: (batch, dstate) or (batch, ngroups, dstate) C: (batch, dstate) or (batch, ngroups, dstate) D: (dim,) or (nheads, dim) z: (batch, dim) or (batch, nheads, dim) dt_bias: (dim,) or (nheads, dim) Return: out: (batch, dim) or (batch, nheads, dim) """ has_heads = state.ndim > 3 if state.ndim == 3: state = mx.expand_dims(state, 1) if x.ndim == 2: x = mx.expand_dims(x, 1) if dt.ndim == 2: dt = mx.expand_dims(dt, 1) if A.ndim == 2: A = mx.expand_dims(A, 0) if B.ndim == 2: B = mx.expand_dims(B, 1) if C.ndim == 2: C = mx.expand_dims(C, 1) if D is not None and D.ndim == 1: D = mx.expand_dims(D, 0) if z is not None and z.ndim == 2: z = mx.expand_dims(z, 1) if dt_bias is not None and dt_bias.ndim == 1: dt_bias = mx.expand_dims(dt_bias, 0) batch, nheads, dim, dstate = state.shape assert x.shape == (batch, nheads, dim) assert dt.shape == x.shape assert A.shape == (nheads, dim, dstate) ngroups = B.shape[1] assert nheads % ngroups == 0, "nheads must be divisible by ngroups" assert B.shape == (batch, ngroups, dstate) assert C.shape == B.shape if D is not None: assert D.shape == (nheads, dim) if z is not None: assert z.shape == x.shape if dt_bias is not None: assert dt_bias.shape == (nheads, dim) dt = dt + dt_bias dt = nn.softplus(dt) if dt_softplus else dt dA = mx.exp(mx.expand_dims(dt, axis=-1) * A) # (batch, nheads, dim, dstate) B = mx.reshape( mx.tile(mx.expand_dims(B, axis=2), (1, 1, nheads // ngroups, 1)), (batch, nheads, dstate), ) # (batch, nheads, dstate) C = mx.reshape( mx.tile(mx.expand_dims(C, axis=2), (1, 1, nheads // ngroups, 1)), (batch, nheads, dstate), ) # (batch, nheads, dstate) dB = mx.expand_dims(dt, axis=-1) * mx.expand_dims(B, axis=-2) # (batch, nheads, dim, dstate) state = state * dA + dB * mx.expand_dims(x, axis=-1) # (batch, dim, dstate out = mx.einsum("bhdn,bhn->bhd", state.astype(C.dtype), C) if D is not None: out += (x * D).astype(out.dtype) out = (out if z is None else out * nn.silu(z)).astype(x.dtype) if not has_heads: out = out.squeeze(1) return out, state def ssd_update_state( ssm_state: mx.array, x: mx.array, dt: mx.array, A: mx.array, B: mx.array, C: mx.array, D: mx.array, z: mx.array, dt_bias: mx.array, dt_softplus: bool, ) -> tuple[mx.array, mx.array]: assert ssm_state.dtype == mx.float32 dtype = x.dtype hidden_size_per_head = x.shape[-1] d_state = B.shape[-1] A = mx.broadcast_to(A[:, None, None], (A.shape[0], hidden_size_per_head, d_state)).astype(mx.float32) dt = mx.broadcast_to(dt[..., None], (dt.shape[0], dt.shape[1], hidden_size_per_head)) dt_bias = mx.broadcast_to(dt_bias[:, None], (dt_bias.shape[0], hidden_size_per_head)) D = mx.broadcast_to(D[:, None], (D.shape[0], hidden_size_per_head)) out, ssm_state = selective_state_update_ref( ssm_state, x.astype(dtype), dt.astype(dtype), A.astype(mx.float32), B.astype(dtype), C.astype(dtype), D.astype(mx.float32), z.astype(dtype), dt_bias.astype(mx.float32), dt_softplus=dt_softplus, ) return out[:, None], ssm_state def _ssd_chunk_scan_combined_naive( x: mx.array, dt: mx.array, A: mx.array, B: mx.array, C: mx.array, D: mx.array, z: mx.array, dt_bias: mx.array, dt_softplus: bool, seq_idx: mx.array | None, ssm_state: mx.array, ) -> tuple[mx.array, mx.array]: assert ssm_state.dtype == mx.float32 length = x.shape[1] ys = [] for i in range(length): if i != 0 and seq_idx is not None: ssm_state = mx.where( mx.array(seq_idx[:, i - 1] != seq_idx[:, i])[:, None, None, None], mx.zeros_like(ssm_state), ssm_state, ) y, ssm_state = ssd_update_state( ssm_state, x[:, i], dt[:, i], A, B[:, i], C[:, i], D if D.ndim == 1 else D[:, i], z=z[:, i], dt_bias=dt_bias, dt_softplus=dt_softplus, ) ys.append(y) return mx.concatenate(ys, axis=1), ssm_state def ssd_chunk_scan_combined( x: mx.array, dt: mx.array, A: mx.array, B: mx.array, C: mx.array, chunk_size: int, D: mx.array, z: mx.array, dt_bias: mx.array, dt_softplus: bool, return_final_states: bool, seq_idx: mx.array | None, ssm_state: mx.array | None, ) -> tuple[mx.array, mx.array] | mx.array: if seq_idx is not None: assert seq_idx.dtype == mx.int32 assert ssm_state is None assert not return_final_states if ssm_state is not None: assert ssm_state.dtype == mx.float32 assert seq_idx is None """ state will be updates by following: ``` dt = softplus(dt) dA = exp(dt * A) state_next = state * dA + dB * x ``` To avoid updating state, we set dt to -inf and x to 0 because `softplus(-inf) = 0` and `exp(0) = 1` """ if ssm_state is None: bsize, _, num_heads, channel = x.shape state = B.shape[-1] ssm_state = mx.zeros((bsize, num_heads, channel, state), dtype=mx.float32) tmp, ssm_state = _ssd_chunk_scan_combined_naive( x, dt, A, B, C, D, z=z, dt_bias=dt_bias, dt_softplus=dt_softplus, seq_idx=seq_idx, ssm_state=ssm_state, ) if return_final_states: return tmp, ssm_state else: return tmp def _causal_conv1d( conv_state: mx.array | None, weight: mx.array, x: mx.array, seq_idx: mx.array | None ) -> tuple[mx.array, mx.array | None]: dtype = x.dtype if conv_state is not None: dtype = conv_state.dtype assert seq_idx is None if seq_idx is not None: assert seq_idx.dtype == mx.int32 assert conv_state is None weight = weight.astype(dtype) x = x.astype(dtype) return_final_states = conv_state is not None if conv_state is None: bsize = x.shape[0] dim = weight.shape[0] d_conv = weight.shape[-1] conv_state = mx.zeros((bsize, dim, d_conv - 1), dtype=x.dtype) length = x.shape[-1] out = mx.zeros_like(x) for i in range(length): if i != 0 and seq_idx is not None: conv_state = mx.where( seq_idx[:, i - 1][:, None, None] != seq_idx[:, i][:, None, None], mx.zeros_like(conv_state), conv_state, ) out[:, :, i : i + 1], conv_state = _causal_conv1d_update(conv_state, weight, x[:, :, i : i + 1]) x = out if return_final_states: return x, conv_state else: return x, None def causal_conv1d_update( x, conv_state, weight, bias=None, activation=None, cache_seqlens=None ) -> tuple[mx.array, mx.array]: """ x: (batch, dim) or (batch, dim, seqlen) conv_state: (batch, dim, state_len), where state_len >= width - 1 weight: (dim, width) bias: (dim,) cache_seqlens: (batch,), dtype int32. If not None, the conv_state is treated as a circular buffer. The conv_state will be updated by copying x to the conv_state starting at the index @cache_seqlens % state_len before performing the convolution. out: (batch, dim) or (batch, dim, seqlen) """ if activation not in [None, "silu", "swish"]: raise NotImplementedError("activation must be None, silu, or swish") dtype_in = x.dtype unsqueeze = x.ndim == 2 if unsqueeze: x = x.unsqueeze(-1) batch, dim, seqlen = x.shape width = weight.shape[1] state_len = conv_state.shape[-1] assert conv_state.shape == (batch, dim, state_len) assert weight.shape == (dim, width) if cache_seqlens is None: x_new = mx.concatenate([conv_state, x], axis=-1).astype(weight.dtype) # (batch, dim, state_len + seqlen) conv_state = x_new[:, :, -state_len:] else: width_idx = mx.expand_dims(mx.arange(-(width - 1), 0, dtype=mx.int64), axis=0) + mx.expand_dims( cache_seqlens, axis=1 ) width_idx = mx.expand_dims(mx.remainder(width_idx, state_len), axis=1) width_idx = mx.broadcast_to(width_idx, (width_idx.shape[0], dim, width_idx.shape[2])) x_new = mx.concatenate([conv_state.gather(2, width_idx), x], axis=-1) x_new = x_new.astype(weight.dtype) copy_idx = mx.expand_dims(mx.arange(seqlen, dtype=mx.int64), axis=0) + mx.expand_dims(cache_seqlens, axis=1) copy_idx = mx.expand_dims(mx.remainder(copy_idx, state_len), axis=1) copy_idx = mx.broadcast_to(copy_idx, (copy_idx.shape[0], dim, copy_idx.shape[2])) conv_state.scatter_(2, copy_idx, x) assert bias is None # x_new: (N, C, L) -> (N, L, C) out = mx.conv1d( x_new.transpose(0, 2, 1), mx.expand_dims(weight, axis=2), padding=0, groups=dim, ).transpose(0, 2, 1)[:, :, -seqlen:] if unsqueeze: out = out.squeeze(-1) return (out if activation is None else nn.silu(out)).astype(dtype_in), conv_state def _causal_conv1d_update(conv_state: mx.array, weight: mx.array, xBC: mx.array) -> tuple[mx.array, mx.array]: dtype = conv_state.dtype xBC = xBC.astype(dtype) weight = weight.astype(dtype) x, conv_state = causal_conv1d_update( x=xBC, conv_state=conv_state, weight=weight[:, :, 0], activation="silu", ) return x, conv_state # Based on: https://github.com/Dao-AILab/causal-conv1d/blob/82867a9d2e6907cc0f637ac6aff318f696838548/causal_conv1d/causal_conv1d_interface.py#L206 def causal_conv1d(x, weight, bias=None, activation=None): """ MLX implementation of a causal depthwise 1D convolution. Args: x (mx.array): Input tensor of shape (batch, channels, seq_len). weight (mx.array): Convolution filters of shape (channels, kernel_width). Each channel has its own filter (depthwise conv). bias (mx.array, optional): Bias for each channel of shape (channels,). activation (str, optional): Activation to apply ("silu" or "swish" supported). Returns: mx.array: Output tensor of shape (batch, channels, seq_len). """ x = mx.array(x) if not isinstance(x, mx.array) else x weight = mx.array(weight) if not isinstance(weight, mx.array) else weight if bias is not None: bias = mx.array(bias) if not isinstance(bias, mx.array) else bias batch, channels, seq_len = x.shape _, kernel_width = weight.shape # weight shape: (channels, kernel_width) # Reshape weight for depthwise conv: (out_channels, in_channels/groups, kernel_width) # Here out_channels = channels, in_channels/groups = 1 (depthwise conv per channel) w = weight.reshape((channels, 1, kernel_width)) # Pad input on the left with (kernel_width-1) zeros for causal convolution if kernel_width > 1: pad_shape = (batch, channels, kernel_width - 1) pad_zeros = mx.zeros(pad_shape, dtype=x.dtype) x_padded = mx.concatenate([pad_zeros, x], axis=2) # concat along time axis else: x_padded = x # Perform depthwise convolution. Padding is already applied manually, so use padding=0 in conv1d. y = mx.conv1d(x_padded, w, stride=1, padding=0, groups=channels) # After convolution, y shape = (batch, channels, seq_len) because: # input length = seq_len + kernel_width - 1, no padding in conv, so output length = seq_len. # Add bias if provided (bias shape (channels,) broadcasts to (batch, channels, seq_len)) if bias is not None: y = y + bias.reshape((1, channels, 1)) # Apply activation if specified if activation in ("silu", "swish"): # SiLU (swish) activation: y * sigmoid(y) y = y * mx.sigmoid(y) elif activation is not None: raise ValueError(f"Unsupported activation: {activation}") return y class Mamba(nn.Module): def __init__(self, config: ModelArgs, layer_idx: int) -> None: super().__init__() self.config = config self.layer_idx = layer_idx self.hidden_size = config.hidden_size self.d_state = config.mamba_d_state self.d_conv = config.mamba_d_conv self.chunk_size = config.mamba_chunk_size self.num_heads = config.mamba_num_heads # TODO add mamba_hidden_size_per_head config (?) self.hidden_size_per_head = config.hidden_size_per_head self.intermediate_size = self.num_heads * self.hidden_size_per_head self.in_proj = nn.Linear(self.hidden_size, 2 * self.intermediate_size, bias=False) self.conv1d = nn.Conv1d( in_channels=self.intermediate_size, out_channels=self.intermediate_size, bias=False, # TODO the original implementation uses bias kernel_size=self.d_conv, groups=self.intermediate_size, padding=0, ) self.dt_dim = max(64, self.hidden_size // 16) # Notes: # Mamba2 removes this linear projection for simplicity (Figure 6 in the paper), # but it may degrade the ability of content-length extrapolation. self.bcdt_proj = nn.Linear( self.intermediate_size, self.dt_dim + 2 * self.d_state, bias=False, ) self.dt_proj = nn.Linear(self.dt_dim, self.num_heads, bias=False) self.dt_bias = get_initial_dt_bias(self.num_heads) self.A_log = get_initial_A(self.num_heads) self.D = mx.ones(self.num_heads, dtype=mx.float32) # TODO norm weight before gating like Mamba2 self.dt_norm_weight = mx.ones(self.dt_dim) self.B_norm_weight = mx.ones(self.d_state) self.C_norm_weight = mx.ones(self.d_state) self.out_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False) def _no_weight_decay_param_names(self) -> set[str]: return set(["D", "dt_bias", "A_log"]) def __call__( self, hidden_states: mx.array, attention_mask: Optional[mx.array] = None, past_states: Optional[PlamoCache] = None, ) -> tuple[mx.array, Optional[PlamoCache]]: bsize, length, _ = hidden_states.shape is_update = length == 1 and past_states is not None bool_mask: mx.array | None = None seq_idx: mx.array | None = None if attention_mask is not None: if len(attention_mask.shape) == 2: attention_mask = mx.broadcast_to( attention_mask[None, None], (bsize, 1, attention_mask.shape[0], attention_mask.shape[1]), ) assert len(attention_mask.shape) == 4 if past_states is None: # TODO: support seq_idx with cache bool_mask_4d = mx.array(attention_mask == 0, dtype=mx.bool_) # type: ignore is_first_token = _is_first_token(bool_mask_4d)[:, 0, :] seq_idx = mx.cumsum(is_first_token, axis=-1) - 1 seq_idx = seq_idx.astype(mx.int32) # `generate` function creates attention mask that contains past tokens, # but mamba does not use them attention_mask = attention_mask[:, 0, -length:, -length:] bool_mask = mx.array(mx.diagonal(attention_mask, axis1=-2, axis2=-1) == 0) conv_state: mx.array | None ssm_state: mx.array | None if past_states is None: conv_state = None ssm_state = None elif past_states[self.layer_idx] is None: conv_state = mx.zeros( (bsize, self.intermediate_size, self.d_conv - 1), dtype=hidden_states.dtype, ) ssm_state = mx.zeros( (bsize, self.num_heads, self.hidden_size_per_head, self.d_state), dtype=mx.float32, ) else: c = past_states[self.layer_idx] assert isinstance(c, PlamoMambaCache) conv_state = c.conv_state ssm_state = c.ssm_state zx = self.in_proj(hidden_states) zx = zx.reshape(bsize, length, self.num_heads, -1) # z: (bsize, length, num_heads, hidden_size_per_head) # x: (bsize, length, num_heads, hidden_size_per_head) z, x = mx.split( zx, [ self.hidden_size_per_head, ], axis=-1, ) # conv x = x.reshape(bsize, length, -1).transpose(0, 2, 1) # (bsize, intermediate_size, length) if bool_mask is not None: x = mx.where(bool_mask[:, None, :], x, 0.0) if is_update: assert conv_state is not None x, conv_state = _causal_conv1d_update(conv_state, self.conv1d.weight, x) else: x, conv_state = _causal_conv1d(conv_state, self.conv1d.weight, x, seq_idx=seq_idx) x = x.astype(hidden_states.dtype) x = x.transpose(0, 2, 1) # (bsize, length, intermediate_size) x = x.reshape(bsize, length, -1) # x: (bsize, length, num_heads, hidden_size_per_head) # B: (bsize, length, 1, d_state) # C: (bsize, length, 1, d_state) # dt: (bsize, length, dt_dim) BCdt = self.bcdt_proj(x) x = x.reshape(bsize, length, self.num_heads, -1) B, C, dt = mx.split(BCdt, [self.d_state, self.d_state * 2], axis=-1) B = B[:, :, None, :] C = C[:, :, None, :] A = -mx.exp(self.A_log.astype(mx.float32)) # (num_heads,) dt = _rms_norm(dt, None, self.config.rms_norm_eps) * self.dt_norm_weight[None, None, :] B = _rms_norm(B, None, self.config.rms_norm_eps) * self.B_norm_weight[None, None, None, :] C = _rms_norm(C, None, self.config.rms_norm_eps) * self.C_norm_weight[None, None, None, :] # (bsize, length, num_heads, 1) dt = self.dt_proj(dt)[..., None] # TODO it may not be required B = mx.broadcast_to(B, (B.shape[0], B.shape[1], self.num_heads, B.shape[3])) C = mx.broadcast_to(C, (C.shape[0], C.shape[1], self.num_heads, C.shape[3])) if bool_mask is not None: """ state will be updates by following: ``` dt = softplus(dt) dA = exp(dt * A) state_next = state * dA + dB * x ``` To avoid updating state, we set dt to -inf and x to 0 because `softplus(-inf) = 0` and `exp(0) = 1` """ dt = mx.where(bool_mask[:, :, None, None], dt, float("-inf")) x = mx.where(bool_mask[:, :, None, None], x, 0.0) # ssm if is_update: assert ssm_state is not None out, ssm_state = ssd_update_state( ssm_state, x[:, 0], dt[:, 0].reshape(bsize, -1), A, B[:, 0], C[:, 0], D=self.D, z=z[:, 0], dt_bias=self.dt_bias, dt_softplus=True, ) else: tmp = ssd_chunk_scan_combined( x, dt.reshape(bsize, length, -1), A, B, C, self.chunk_size, D=self.D, z=z, dt_bias=self.dt_bias, dt_softplus=True, return_final_states=past_states is not None, seq_idx=seq_idx, ssm_state=ssm_state, ) if past_states is not None: out, ssm_state = tmp else: assert isinstance(tmp, mx.array) out = tmp y = self.out_proj(out.reshape(bsize, length, -1)) if past_states is not None: assert ssm_state is not None assert conv_state is not None past_states.update_mamba(conv_state, ssm_state, self.layer_idx) return y, past_states def swa_mask(q_len: int, kv_len: int, window_size: int) -> mx.array: max_len = max(q_len, kv_len) mask = mx.tril( mx.triu(mx.ones((max_len, max_len), dtype=mx.bool_), k=-window_size), # type: ignore k=window_size, ) return mask[-q_len:, -kv_len:] class Attention(nn.Module): def __init__(self, config: ModelArgs, layer_idx: int) -> None: super().__init__() self.config = config self.layer_idx = layer_idx self.hidden_size = config.hidden_size head_dim = config.hidden_size_per_head self.max_position_embeddings = config.max_position_embeddings self.scale = head_dim**-0.5 self.q_num_heads = config.num_attention_heads self.qk_dim = self.v_dim = head_dim self.k_num_heads = self.v_num_heads = config.num_key_value_heads assert self.q_num_heads % self.k_num_heads == 0 self.n_group = self.q_num_heads // self.k_num_heads self.q_proj_dim = self.q_num_heads * self.qk_dim self.k_proj_dim = self.k_num_heads * self.qk_dim self.v_proj_dim = self.k_num_heads * self.v_dim self.qkv_proj = nn.Linear( self.hidden_size, self.q_proj_dim + self.k_proj_dim + self.v_proj_dim, bias=False, ) self.o_proj = nn.Linear(self.q_num_heads * self.v_dim, self.hidden_size, bias=False) self.q_weight = mx.ones((self.q_num_heads, self.qk_dim)) self.k_weight = mx.ones((self.k_num_heads, self.qk_dim)) self.rotary_emb = RotaryEmbedding(self.qk_dim, max_position_embeddings=self.config.attention_window_size) def __call__( self, hidden_states: mx.array, attention_mask: Optional[mx.array] = None, past_states: Optional[PlamoCache] = None, output_attentions: bool = False, ) -> tuple[mx.array, Optional[mx.array], Optional[PlamoCache]]: bsz, q_len, _ = hidden_states.shape qkv = self.qkv_proj(hidden_states) query_states, key_states, value_states = mx.split( qkv, [self.q_proj_dim, self.q_proj_dim + self.k_proj_dim], axis=-1 ) query_states = query_states.reshape(bsz, q_len, self.q_num_heads, self.qk_dim).transpose(0, 2, 1, 3) key_states = key_states.reshape(bsz, q_len, self.k_num_heads, self.qk_dim).transpose(0, 2, 1, 3) value_states = value_states.reshape(bsz, q_len, self.v_num_heads, self.v_dim).transpose(0, 2, 1, 3) attn_dtype = query_states.dtype query_states = _rms_norm(query_states, None, 1e-6) * self.q_weight[None, :, None] key_states = _rms_norm(key_states, None, 1e-6) * self.k_weight[None, :, None] if past_states is not None: # reuse k, v, self_attention key_states_new = key_states value_states_new = value_states key_states, value_states = past_states.append_kv(key_states, value_states, self.layer_idx) # type: ignore past_states.update_attention(key_states_new, value_states_new, self.layer_idx) kv_seq_len = key_states.shape[-2] position_ids = mx.arange(kv_seq_len, dtype=mx.int64)[None] q_position_ids = position_ids[:, -query_states.shape[2] :] cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) query_states = _rotary_pos_emb(query_states, cos, sin, q_position_ids) key_states = _rotary_pos_emb(key_states, cos, sin, position_ids) # [bsz, nh, t, hd] # expand shared kv assert self.k_num_heads == self.v_num_heads key_states = mx.tile(key_states, (1, self.n_group, 1, 1)) value_states = mx.tile(value_states, (1, self.n_group, 1, 1)) full_attn = self.layer_idx in self.config.full_attention_idx query_states = query_states.astype(attn_dtype) key_states = key_states.astype(attn_dtype) value_states = value_states.astype(attn_dtype) if attention_mask is not None and attention_mask.dtype != bool: attention_mask = attention_mask.astype(attn_dtype) if attention_mask is None: if not full_attn: assert key_states.shape[2] <= self.config.attention_window_size + 1 mask = create_attention_mask(hidden_states) attn_output = mx.fast.scaled_dot_product_attention( query_states, key_states, value_states, scale=self.scale, mask=mask, ) else: if attention_mask.dtype == bool: attention_mask = mx.where(attention_mask, mx.array(0.0, dtype=mx.float16), float("-inf")) if len(attention_mask.shape) == 2: attention_mask = attention_mask[None, None] assert len(attention_mask.shape) == 4 if not full_attn: m_swa = swa_mask( query_states.shape[2], key_states.shape[2], self.config.attention_window_size, ) # `generate` function creates attention mask that does not consider sliding window m_swa = m_swa[None, None] attention_mask = attention_mask[:, :, -query_states.shape[2] :, -key_states.shape[2] :] attention_mask = mx.where(m_swa, attention_mask, float("-inf")) # like AttentionMaskConverter._unmask_unattended in huggingface.transfoermers, # we need to attend to all tokens in masked rows for `scaled_dot_product_attention` bool_mask = mx.logical_not(mx.isneginf(attention_mask)) valid_tokens = mx.sum(bool_mask, axis=-1).astype(mx.bool_) # type: ignore # (..., q_len) attention_mask = mx.where(valid_tokens[..., None], attention_mask, float(0.0)) attn_output = mx.fast.scaled_dot_product_attention( query_states, key_states, value_states, scale=self.scale, mask=attention_mask, ) attn_output = attn_output.transpose(0, 2, 1, 3) attn_output = attn_output.reshape(bsz, q_len, self.q_num_heads * self.v_dim) attn_output = self.o_proj(attn_output) if not output_attentions: attn_weights = None return attn_output, attn_weights, past_states class MLP(nn.Module): def __init__(self, config: ModelArgs) -> None: super().__init__() self.config = config self.hidden_size = config.hidden_size self.intermediate_size = config.intermediate_size self.gate_up_proj = nn.Linear(self.hidden_size, self.intermediate_size * 2, bias=False) self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False) def __call__(self, x: mx.array) -> mx.array: h = self.gate_up_proj(x) h = _swiglu(h) return self.down_proj(h) # type: ignore class PlamoDecoderLayer(nn.Module): def __init__(self, config: ModelArgs, is_mamba: bool, layer_idx: int) -> None: super().__init__() self.config = config self.hidden_size = config.hidden_size self.is_mamba = is_mamba self.mixer: nn.Module if is_mamba: self.mixer = Mamba(config, layer_idx) else: self.mixer = Attention(config, layer_idx) self.mlp = MLP(config) """ Notes: The model performance was degraded when setting all offsets to 1. """ self.pre_mixer_norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps, offset=1.0) self.post_mixer_norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps, offset=1.0 / 5) self.pre_mlp_norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps, offset=1.0) self.post_mlp_norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps, offset=1.0 / (5**1.5)) def __call__( self, hidden_states: mx.array, attention_mask: Optional[mx.array] = None, past_state: Optional[PlamoCache] = None, output_attentions: Optional[bool] = False, ) -> tuple[Any, ...]: # from LlamaDecoder residual = hidden_states hidden_states = self.pre_mixer_norm(hidden_states) # Self Attention if self.is_mamba: hidden_states_sa, present_key_value = self.mixer( hidden_states=hidden_states, attention_mask=attention_mask, past_states=past_state, ) self_attn_weights = None else: hidden_states_sa, self_attn_weights, present_key_value = self.mixer( hidden_states=hidden_states, attention_mask=attention_mask, past_states=past_state, output_attentions=output_attentions, ) hidden_states_sa = self.post_mixer_norm(hidden_states_sa) hidden_states = residual + hidden_states_sa residual = hidden_states hidden_states = self.pre_mlp_norm(hidden_states) # Fully Connected hidden_states_mlp = self.mlp(hidden_states) # Residual hidden_states_mlp = self.post_mlp_norm(hidden_states_mlp) hidden_states = residual + hidden_states_mlp outputs: Any = (hidden_states,) if output_attentions: outputs += (self_attn_weights,) return outputs # type: ignore def is_mamba(config: ModelArgs, i: int) -> bool: if not config.mamba_enabled: return False assert config.mamba_step > 1 assert i < config.num_hidden_layers if config.num_hidden_layers <= (config.mamba_step // 2): # use attention in last layer return i != config.num_hidden_layers - 1 return (i % config.mamba_step) != (config.mamba_step // 2) class PlamoDecoder(nn.Module): def __init__(self, config: ModelArgs) -> None: super().__init__() self.layers = [ PlamoDecoderLayer(config, is_mamba=is_mamba(config, i), layer_idx=i) for i in range(config.num_hidden_layers) ] self.gradient_checkpointing = False def __call__(self, x: DecoderInput) -> DecoderOutput: all_hidden_states: Optional[tuple[mx.array, ...]] = () if x.output_hidden_states else None all_self_attns: Optional[tuple[mx.array, ...]] = () if x.output_attentions else None hidden_states = x.hidden_states for decoder_layer in self.layers: if x.output_hidden_states: assert all_hidden_states is not None all_hidden_states += (hidden_states,) if self.training and x.gradient_checkpointing: layer_outputs = self._gradient_checkpointing_func( decoder_layer.__call__, hidden_states, x.attention_mask, x.past_states, x.output_attentions, ) else: layer_outputs = decoder_layer( hidden_states, attention_mask=x.attention_mask, past_state=x.past_states, output_attentions=x.output_attentions, ) hidden_states = layer_outputs[0] if x.output_attentions: assert layer_outputs[1] is not None assert all_self_attns is not None all_self_attns += (layer_outputs[1],) return DecoderOutput(hidden_states, all_hidden_states, all_self_attns) class ModelOutput(OrderedDict): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) def __getitem__(self, k): if isinstance(k, str): inner_dict = dict(self.items()) return inner_dict[k] else: return self.to_tuple()[k] def to_tuple(self) -> tuple[Any]: """ Convert self to a tuple containing all the attributes/keys that are not `None`. """ return tuple(self[k] for k in self.keys()) class BaseModelOutputWithPast(ModelOutput): """ Base class for model's outputs that may also contain a past key/values (to speed up sequential decoding). Args: last_hidden_state (:obj:`mx.array` of shape :obj:`(batch_size, sequence_length, hidden_size)`): Sequence of hidden-states at the output of the last layer of the model. If :obj:`past_key_values` is used only the last hidden-state of the sequences of shape :obj:`(batch_size, 1, hidden_size)` is output. past_key_values (:obj:`list[mx.array]`, `optional`, returned when ``use_cache=True`` is passed or when ``config.use_cache=True``): list of :obj:`mx.array` of length :obj:`config.n_layers`, with each tensor of shape :obj:`(2, batch_size, num_heads, sequence_length, embed_size_per_head)`). Contains pre-computed hidden-states (key and values in the attention blocks) that can be used (see ``past_key_values`` input) to speed up sequential decoding. hidden_states (:obj:`tuple(mx.array)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``): Tuple of :obj:`mx.array` (one for the output of the embeddings + one for the output of each layer) of shape :obj:`(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (:obj:`tuple(mx.array)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``): Tuple of :obj:`mx.array` (one for each layer) of shape :obj:`(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ def __init__(self, *args, **kwargs) -> None: super().__init__(*args, **kwargs) self.last_hidden_state: mx.array = kwargs.pop("last_hidden_state") self.past_key_values: Optional[tuple[tuple[mx.array]]] = kwargs.pop("past_key_values", None) self.hidden_states: Optional[tuple[mx.array, ...]] = kwargs.pop("hidden_states", None) self.attentions: Optional[tuple[mx.array, ...]] = kwargs.pop("attentions", None) class CausalLMOutputWithPast(ModelOutput): """ Base class for causal language model (or autoregressive) outputs. Args: loss (`mx.array` of shape `(1,)`, *optional*, returned when `labels` is provided): Language modeling loss (for next-token prediction). logits (`mx.array` of shape `(batch_size, sequence_length, config.vocab_size)`): Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). past_key_values (`tuple(tuple(mx.array))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): Tuple of `tuple(mx.array)` of length `config.n_layers`, with each tuple having 2 tensors of shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. hidden_states (`tuple(mx.array)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `mx.array` (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. attentions (`tuple(mx.array)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `mx.array` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ def __init__(self, *args, **kwargs) -> None: super().__init__(*args, **kwargs) self.loss: Optional[mx.array] = kwargs.pop("loss", None) self.logits: mx.array | None = kwargs.pop("logits", None) self.past_key_values: Optional[tuple[tuple[mx.array]]] = kwargs.pop("past_key_values", None) self.hidden_states: Optional[tuple[mx.array, ...]] = kwargs.pop("hidden_states", None) self.attentions: Optional[tuple[mx.array, ...]] = kwargs.pop("attentions", None) class PlamoPreTrainedModel(nn.Module): # type: ignore config_class = ModelArgs _no_split_modules: list[str] base_model_prefix = "model" supports_gradient_checkpointing = True _no_split_modules = ["PlamoDecoderLayer"] _skip_keys_device_placement = "past_key_values" _keys_to_ignore_on_load_unexpected = [r"decoder\.version"] def __init__(self, config: ModelArgs): super().__init__() self.config = config def _init_weights(self, module: nn.Module) -> None: std = 0.02 if isinstance(module, nn.Linear): module.weight = mx.random.normal(loc=0.0, scale=std, shape=module.weight.shape) if module.bias is not None: module.bias = mx.zeros_like(module.bias) elif isinstance(module, nn.Embedding): module.weight = mx.random.normal(loc=0.0, scale=std, shape=module.weight.shape) if module.padding_idx is not None: module.weight[module.padding_idx] = mx.zeros_like(module.weight[module.padding_idx]) class PlamoModel(PlamoPreTrainedModel): def __init__(self, config: ModelArgs): super().__init__(config) assert config.eval_attention_n_bit is None assert config.eval_mlp_n_bit is None self.padding_idx = config.pad_token_id self.vocab_size = config.vocab_size self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size) self.layers = PlamoDecoder(config) # type: ignore self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.gradient_checkpointing = False # Initialize weights and apply final processing # self.post_init() def get_input_embeddings(self) -> nn.Embedding: return self.embed_tokens def set_input_embeddings(self, value: nn.Embedding) -> None: self.embed_tokens = value # Copied from transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask def _prepare_decoder_attention_mask( self, attention_mask: mx.array, input_shape: tuple[int, int], inputs_embeds: Optional[mx.array], past_key_values_length: int, ) -> Optional[mx.array]: # create causal mask # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] combined_attention_mask: Optional[mx.array] = None if input_shape[-1] > 1: assert inputs_embeds is not None combined_attention_mask = _make_causal_mask( input_shape, inputs_embeds.dtype, past_key_values_length=past_key_values_length, ) input_shape = (input_shape[0], combined_attention_mask.shape[2]) if attention_mask is not None: if attention_mask.ndim == 4: # Custom 4D attention mask expanded_attn_mask = attention_mask else: # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] assert inputs_embeds is not None expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]) combined_attention_mask = ( expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask ) return combined_attention_mask def __call__( self, input_ids: Optional[mx.array] = None, attention_mask: Optional[mx.array] = None, position_ids: Optional[mx.array] = None, past_key_values: Optional[PlamoCache] = None, inputs_embeds: Optional[mx.array] = None, image_features: Optional[mx.array] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[tuple, BaseModelOutputWithPast]: assert input_ids is not None output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict # retrieve input_ids and inputs_embeds if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time") elif input_ids is not None: batch_size, seq_length = input_ids.shape else: raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds") seq_length_with_past = seq_length past_key_values_length = 0 if past_key_values is not None: past_key_values_length = past_key_values.get_seq_length() seq_length_with_past = seq_length_with_past + past_key_values_length if inputs_embeds is None: inputs_embeds = self.embed_tokens(input_ids) if image_features is not None: assert self.config.image_token_id is not None image_embeds = self.image_proj(image_features) assert image_embeds.shape == inputs_embeds.shape, ( image_embeds.shape, inputs_embeds.shape, ) mask = input_ids == self.config.image_token_id inputs_embeds[mask] = image_embeds[mask] # embed positions require_attn_mask = False if not self.training or past_key_values is not None: require_attn_mask = True if seq_length_with_past >= self.config.attention_window_size: require_attn_mask = True if require_attn_mask and attention_mask is None: attention_mask = mx.ones( (batch_size, seq_length_with_past), dtype=mx.bool_, # type: ignore ) if attention_mask is not None: attention_mask = self._prepare_decoder_attention_mask( attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length, ) hidden_states = inputs_embeds if self.gradient_checkpointing and self.training: if use_cache: use_cache = False if use_cache and past_key_values is None: past_key_values = PlamoCache(self.config) # decoder layers out = self.layers( DecoderInput( hidden_states, attention_mask, past_key_values, output_hidden_states, output_attentions, self.gradient_checkpointing, ) ) assert isinstance(out, DecoderOutput) hidden_states = out.hidden_states all_hidden_states = out.all_hidden_states all_self_attns = out.all_self_attns hidden_states = self.norm(hidden_states) # add hidden states from the last decoder layer if output_hidden_states: assert all_hidden_states is not None all_hidden_states += (hidden_states,) if not return_dict: return tuple( v for v in [ hidden_states, past_key_values, all_hidden_states, all_self_attns, ] if v is not None ) return BaseModelOutputWithPast( last_hidden_state=hidden_states, past_key_values=past_key_values, hidden_states=all_hidden_states, attentions=all_self_attns, ) class Model(PlamoPreTrainedModel): _tied_weights_keys = ["lm_head.weight"] # Without this, the model cannot be loaded into a meta device. # Relevant code: # https://github.com/huggingface/transformers/blob/v4.44.2/src/transformers/modeling_utils.py#L4376-L4381 # https://github.com/huggingface/transformers/blob/v4.44.2/src/transformers/modeling_utils.py#L356 # https://github.com/pytorch/pytorch/blob/v2.4.1/torch/nn/modules/module.py#L2068 _supports_param_buffer_assignment = False def __init__(self, config: ModelArgs) -> None: super().__init__(config) self.config = config self.model = PlamoModel(config) self.vocab_size = config.vocab_size vocab_size = ((self.vocab_size + 15) // 16) * 16 if not config.tie_word_embeddings: self.lm_head: nn.Module = nn.Linear(config.hidden_size, vocab_size, bias=False) self._prefill = True # Initialize weights and apply final processing # self.post_init() def get_input_embeddings(self) -> nn.Embedding: return self.model.embed_tokens def set_input_embeddings(self, value: nn.Embedding) -> None: self.model.embed_tokens = value def get_output_embeddings(self) -> nn.Module: return self.lm_head def set_output_embeddings(self, new_embeddings: nn.Module) -> None: self.lm_head = new_embeddings def set_decoder(self, decoder: PlamoModel) -> None: self.model = decoder def get_decoder(self) -> PlamoModel: return self.model def sanitize(self, weights: dict[Any, Any]) -> dict[Any, Any]: for k, v in weights.items(): if "conv1d.weight" in k and v.shape[-1] != 1: weights[k] = v.moveaxis(2, 1) return weights def make_cache(self) -> PlamoCache: return PlamoCache(self.config) def __call__(self, inputs: mx.array, cache: PlamoCache | None = None) -> mx.array: model_inputs = self.prepare_inputs_for_generation( input_ids=inputs, past_key_values=cache, use_cache=self.config.use_cache, ) if self._prefill: model_inputs["input_ids"] = inputs self._prefill = False output = self.forward(**model_inputs) if not isinstance(output, CausalLMOutputWithPast): raise ValueError( f"Unexpected output type for causal language model: {type(output)} != CausalLMOutputWithPast" ) if output.logits is not None: return output.logits else: raise ValueError("The model did not return any logits.") def forward( self, input_ids: Optional[mx.array] = None, attention_mask: Optional[mx.array] = None, position_ids: Optional[mx.array] = None, past_key_values: Optional[PlamoCache] = None, inputs_embeds: Optional[mx.array] = None, image_features: Optional[mx.array] = None, labels: Optional[mx.array] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[tuple[Any, ...], CausalLMOutputWithPast]: r""" Args: labels (`mx.array` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. Returns: Example: ```python >>> from transformers import AutoTokenizer, LlamaForCausalLM >>> model = LlamaForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS) >>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER) >>> prompt = "Hey, are you consciours? Can you talk to me?" >>> inputs = tokenizer(prompt, return_tensors="pt") >>> # Generate >>> generate_ids = model.generate(inputs.input_ids, max_length=30) >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] "Hey, are you consciours? Can you talk to me?\nI'm not consciours, but I can talk to you." ```""" assert input_ids is not None output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) outputs = self.model( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, image_features=image_features, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) if isinstance(outputs, tuple): hidden_states = outputs[0] elif isinstance(outputs, BaseModelOutputWithPast): hidden_states = outputs.last_hidden_state if self.config.tie_word_embeddings: logits = self.model.embed_tokens.as_linear(hidden_states) else: logits = self.lm_head(hidden_states) logits = logits[..., : self.vocab_size] loss = None if labels is not None: # Shift so that tokens < n predict n shift_logits = logits[..., :-1, :] shift_labels = labels[..., 1:] # Flatten the tokens loss_fct = nn.losses.cross_entropy shift_logits = shift_logits.reshape((-1, self.config.vocab_size)) shift_labels = shift_labels.reshape((-1,)) # Enable model parallelism loss = loss_fct(shift_logits, shift_labels) if not return_dict: output = (logits,) + outputs[1:] return (loss,) + output if loss is not None else output if not isinstance(outputs, BaseModelOutputWithPast): raise ValueError( f"Unexpected output type for causal language model: {type(outputs)} != BaseModelOutputWithPast" ) return CausalLMOutputWithPast( loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def prepare_inputs_for_generation( self, input_ids: mx.array, past_key_values: Optional[PlamoCache] = None, attention_mask: Optional[mx.array] = None, inputs_embeds: Optional[mx.array] = None, image_features: Optional[mx.array] = None, **kwargs: Any, ) -> dict[str, Any]: if past_key_values: input_ids = input_ids[:, -1:] if image_features is not None: image_features = image_features[:, -1:, :] position_ids = kwargs.get("position_ids", None) if attention_mask is not None and position_ids is None: # create position_ids on the fly for batch generation position_ids = attention_mask.astype(mx.int64).cumsum(-1) - 1 position_ids.masked_fill_(attention_mask == 0, 1) if past_key_values: position_ids = position_ids[:, -1].unsqueeze(-1) # if `inputs_embeds` are passed, we only want to use them in the 1st generation step if inputs_embeds is not None and past_key_values is None: model_inputs: dict[str, Any] = {"inputs_embeds": inputs_embeds} else: model_inputs = {"input_ids": input_ids} model_inputs.update( { "position_ids": position_ids, "past_key_values": past_key_values, "use_cache": kwargs.get("use_cache"), "attention_mask": attention_mask, "image_features": image_features, } ) return model_inputs @staticmethod def _reorder_cache(past_key_values: PlamoCache, beam_idx: mx.array) -> PlamoCache: past_key_values.reorder_cache(beam_idx) return past_key_values @property def layers(self): return self.model.layers