|
import enum |
|
import math |
|
from collections import OrderedDict |
|
from dataclasses import dataclass |
|
from typing import Any, Literal, NamedTuple, Optional, Union |
|
|
|
import mlx.core as mx |
|
import mlx.nn as nn |
|
|
|
from .base import BaseModelArgs, create_attention_mask |
|
|
|
|
|
def _is_first_token(mask: mx.array) -> mx.array: |
|
assert mask.dtype == mx.bool_ |
|
B, Nh, q_len, kv_len = mask.shape |
|
mask = mask[:, :, :, -q_len:] |
|
cont = q_len != kv_len |
|
v = False if cont else True |
|
out = mx.logical_not(mx.diagonal(mask, offset=-1, axis1=-2, axis2=-1).astype(mx.bool_)) |
|
out = mx.concatenate([mx.full(shape=(B, Nh, 1), dtype=mx.bool_, vals=v), out], axis=-1) |
|
return out |
|
|
|
|
|
def _swiglu(h: mx.array) -> mx.array: |
|
size = h.shape[-1] |
|
chunks = 2 |
|
_current_idx = 0 |
|
split_sizes = [] |
|
for i in range(chunks - 1): |
|
_current_idx += size // chunks + (1 if i < size % chunks else 0) |
|
split_sizes.append(_current_idx) |
|
hs = mx.split(h, split_sizes, axis=-1) |
|
return nn.silu(hs[0]) * hs[1] |
|
|
|
|
|
class RotaryEmbedding(nn.Module): |
|
def __init__(self, dim: int, max_position_embeddings: int = 2048, base: int = 10000) -> None: |
|
super().__init__() |
|
|
|
self.dim = dim |
|
self.max_position_embeddings = max_position_embeddings |
|
self.base = base |
|
inv_freq = 1.0 / (self.base ** (mx.arange(0, self.dim, 2).astype(mx.float32) / self.dim)) |
|
self._inv_freq = inv_freq |
|
|
|
|
|
self._set_cos_sin_cache(seq_len=max_position_embeddings, dtype=mx.float32) |
|
|
|
def _set_cos_sin_cache(self, seq_len: int, dtype: Any) -> None: |
|
self.max_seq_len_cached = seq_len |
|
t = mx.arange(self.max_seq_len_cached, dtype=self._inv_freq.dtype) |
|
|
|
freqs = mx.einsum("i,j->ij", t, self._inv_freq) |
|
|
|
emb = mx.concatenate([freqs, freqs], axis=-1) |
|
self._cos_cached = emb.cos()[None, None, :, :].astype(mx.float32) |
|
self._sin_cached = emb.sin()[None, None, :, :].astype(mx.float32) |
|
|
|
def __call__(self, x: mx.array, seq_len: int) -> tuple[mx.array, mx.array]: |
|
|
|
if seq_len > self.max_seq_len_cached: |
|
self._set_cos_sin_cache(seq_len=seq_len, dtype=x.dtype) |
|
|
|
return ( |
|
self._cos_cached[:, :, :seq_len, ...].astype(x.dtype), |
|
self._sin_cached[:, :, :seq_len, ...].astype(x.dtype), |
|
) |
|
|
|
|
|
def _rotate_half(x: mx.array) -> mx.array: |
|
"""Rotates half the hidden dims of the input.""" |
|
x1 = x[..., : x.shape[-1] // 2] |
|
x2 = x[..., x.shape[-1] // 2 :] |
|
return mx.concatenate([-x2, x1], axis=-1) |
|
|
|
|
|
def _rotary_pos_emb(x: mx.array, cos: mx.array, sin: mx.array, position_ids: mx.array) -> mx.array: |
|
|
|
cos = cos.squeeze(1).squeeze(0) |
|
sin = sin.squeeze(1).squeeze(0) |
|
cos = mx.expand_dims(cos[position_ids], 1) |
|
sin = mx.expand_dims(sin[position_ids], 1) |
|
x_embed = (x * cos) + (_rotate_half(x) * sin) |
|
return x_embed |
|
|
|
|
|
class LinearType(str, enum.Enum): |
|
Normal = "normal" |
|
Fp8 = "fp8" |
|
Fp8Retain = "fp8-retain" |
|
|
|
|
|
@dataclass |
|
class ModelArgs(BaseModelArgs): |
|
model_type: str = "plamo2" |
|
|
|
def __init__( |
|
self, |
|
hidden_size: int = 4096, |
|
num_hidden_layers: int = 32, |
|
rms_norm_eps: float = 1e-6, |
|
tie_word_embeddings: bool = True, |
|
|
|
num_attention_heads: int = 32, |
|
num_key_value_heads: int = 4, |
|
hidden_size_per_head: int = 128, |
|
max_position_embeddings: int = 2048, |
|
attention_window_size: int = 2048, |
|
full_attention_idx: list[int] | None = None, |
|
|
|
mamba_d_state: int = 64, |
|
mamba_d_conv: int = 4, |
|
mamba_num_heads: int = 64, |
|
mamba_step: int = 2, |
|
mamba_chunk_size: int = 256, |
|
mamba_enabled: bool = True, |
|
|
|
intermediate_size: int = 13312, |
|
|
|
vocab_size: int = 32000, |
|
tokenizer_class: str = "PlamoTokenizer", |
|
pad_token_id: Optional[int] = None, |
|
bos_token_id: int = 1, |
|
eos_token_id: int = 2, |
|
|
|
image_token_id: Optional[int] = None, |
|
image_feature_size: Optional[int] = None, |
|
image_proj_type: Literal["linear", "mlp"] = "linear", |
|
|
|
linear_type: LinearType = LinearType.Normal, |
|
fp8_accum_dtype: Optional[str] = None, |
|
|
|
eval_attention_n_bit: Optional[int] = None, |
|
eval_mlp_n_bit: Optional[int] = None, |
|
use_cache: bool = True, |
|
**kwargs: Any, |
|
) -> None: |
|
|
|
|
|
self.max_position_embeddings = max(10 * 1024 * 1024, max_position_embeddings) |
|
self.hidden_size = hidden_size |
|
self.rms_norm_eps = rms_norm_eps |
|
|
|
self.num_hidden_layers = num_hidden_layers |
|
self.num_attention_heads = num_attention_heads |
|
self.hidden_size_per_head = hidden_size_per_head |
|
self.num_key_value_heads = num_key_value_heads |
|
self.attention_window_size = attention_window_size |
|
self.full_attention_idx = full_attention_idx if full_attention_idx is not None else [] |
|
|
|
self.mamba_d_state = mamba_d_state |
|
self.mamba_d_conv = mamba_d_conv |
|
self.mamba_num_heads = mamba_num_heads |
|
self.mamba_step = mamba_step |
|
self.mamba_chunk_size = mamba_chunk_size |
|
self.mamba_enabled = mamba_enabled |
|
|
|
self.intermediate_size = intermediate_size |
|
|
|
self.vocab_size = vocab_size |
|
|
|
self.image_token_id = image_token_id |
|
self.image_feature_size = image_feature_size |
|
self.image_proj_type = image_proj_type |
|
|
|
self.linear_type = linear_type |
|
self.fp8_accum_dtype = fp8_accum_dtype |
|
|
|
self.eval_attention_n_bit = eval_attention_n_bit |
|
self.eval_mlp_n_bit = eval_mlp_n_bit |
|
self.use_cache = use_cache |
|
|
|
|
|
self.sliding_window = attention_window_size |
|
|
|
self.tokenizer_class = tokenizer_class |
|
self.pad_token_id = pad_token_id |
|
self.bos_token_id = bos_token_id |
|
self.eos_token_id = eos_token_id |
|
self.tie_word_embeddings = tie_word_embeddings |
|
|
|
|
|
self.use_return_dict = kwargs.pop("use_return_dict", True) |
|
self.output_attentions = kwargs.pop("output_attentions", False) |
|
self.output_hidden_states = kwargs.pop("output_hidden_states", False) |
|
|
|
|
|
class PlamoAttentionCache(nn.Module): |
|
def __init__(self, key: mx.array, value: mx.array) -> None: |
|
super().__init__() |
|
B, nh, L, c = key.shape |
|
assert len(value.shape) == 4 |
|
assert value.shape[0] == B |
|
assert value.shape[2] == L |
|
self.key = key |
|
self.value = value |
|
|
|
|
|
class PlamoMambaCache(nn.Module): |
|
def __init__(self, conv_state: mx.array, ssm_state: mx.array) -> None: |
|
super().__init__() |
|
|
|
|
|
assert len(conv_state.shape) == 3 |
|
assert len(ssm_state.shape) == 4 |
|
assert conv_state.shape[0] == ssm_state.shape[0] |
|
self.conv_state = conv_state |
|
self.ssm_state = ssm_state |
|
|
|
|
|
PlamoLayerCache = PlamoAttentionCache | PlamoMambaCache |
|
|
|
|
|
class PlamoCache(nn.Module): |
|
""" |
|
stores states of the model for fast decoding. |
|
`transformers` uses `transformers.Cache` for this purpose, but the interface and variable names are |
|
deeply dependent on Transformers architecture (e.g., `key_states`) and it is difficult to use |
|
other architectures (e.g., Mamba). |
|
This class provides a similar interface to `transformers.Cache`, but is designed to also handle |
|
the state of Mamba properly. |
|
""" |
|
|
|
def __init__(self, config: ModelArgs) -> None: |
|
super().__init__() |
|
self.config = config |
|
self.cache: list[Optional[PlamoLayerCache]] = [None for _ in range(config.num_hidden_layers)] |
|
|
|
def append_kv(self, key: mx.array, value: mx.array, layer_idx: int) -> tuple[mx.array, mx.array]: |
|
c = self.cache[layer_idx] |
|
if c is None: |
|
return key, value |
|
assert isinstance(c, PlamoAttentionCache) |
|
|
|
def _validate(cache: mx.array, new_tensor: mx.array) -> None: |
|
assert len(cache.shape) == 4 |
|
assert len(new_tensor.shape) == 4 |
|
assert cache.shape[0] == new_tensor.shape[0] |
|
assert cache.shape[1] == new_tensor.shape[1] |
|
assert cache.shape[3] == new_tensor.shape[3] |
|
|
|
_validate(c.key, key) |
|
_validate(c.value, value) |
|
assert key.shape[2] == value.shape[2] |
|
return mx.concatenate([c.key, key], axis=2), mx.concatenate([c.value, value], axis=2) |
|
|
|
def update_attention(self, key_states: mx.array, value_states: mx.array, layer_idx: int) -> PlamoAttentionCache: |
|
full_attn = layer_idx in self.config.full_attention_idx |
|
window_size = self.config.attention_window_size |
|
|
|
if self.cache[layer_idx] is None: |
|
if full_attn: |
|
self.cache[layer_idx] = PlamoAttentionCache(key_states, value_states) |
|
else: |
|
self.cache[layer_idx] = PlamoAttentionCache( |
|
key_states[:, :, -window_size:, :], |
|
value_states[:, :, -window_size:, :], |
|
) |
|
else: |
|
c = self.cache[layer_idx] |
|
assert isinstance(c, PlamoAttentionCache) |
|
k, v = self.append_kv(key_states, value_states, layer_idx) |
|
if full_attn: |
|
c.key = k |
|
c.value = v |
|
else: |
|
c.key = k[:, :, -window_size:, :] |
|
c.value = v[:, :, -window_size:, :] |
|
self.cache[layer_idx] = c |
|
return self.cache[layer_idx] |
|
|
|
def update_mamba(self, conv_state: mx.array, ssm_state: mx.array, layer_idx: int) -> PlamoMambaCache: |
|
if self.cache[layer_idx] is None: |
|
self.cache[layer_idx] = PlamoMambaCache(conv_state, ssm_state) |
|
else: |
|
c = self.cache[layer_idx] |
|
assert isinstance(c, PlamoMambaCache) |
|
assert c.conv_state.shape == conv_state.shape |
|
assert c.ssm_state.shape == ssm_state.shape |
|
c.conv_state = conv_state |
|
c.ssm_state = ssm_state |
|
return self.cache[layer_idx] |
|
|
|
def __getitem__(self, layer_idx: int) -> PlamoLayerCache | None: |
|
assert layer_idx < len(self.cache) |
|
layer_cache = self.cache[layer_idx] |
|
return layer_cache |
|
|
|
@property |
|
def state(self): |
|
return self.cache |
|
|
|
@state.setter |
|
def state(self, v): |
|
self.cache = v |
|
|
|
def __len__(self) -> int: |
|
return len(self.cache) |
|
|
|
def get_seq_length(self, layer_idx: Optional[int] = None) -> int: |
|
if layer_idx is not None: |
|
c = self.cache[layer_idx] |
|
assert isinstance(c, PlamoAttentionCache) |
|
return c.key.shape[2] |
|
|
|
sequence_length: int = 0 |
|
for layer_cache in self.cache: |
|
if isinstance(layer_cache, PlamoAttentionCache): |
|
sequence_length = ( |
|
max(layer_cache.key.shape[2], sequence_length) |
|
if sequence_length is not None |
|
else layer_cache.key.shape[2] |
|
) |
|
return sequence_length |
|
|
|
def get_max_length(self) -> int | None: |
|
return None |
|
|
|
def get_usable_length(self, new_seq_length: int, layer_idx: Optional[int] = 0) -> int: |
|
"""Given the sequence length of the new inputs, returns the usable length of the cache.""" |
|
|
|
|
|
|
|
max_length = self.get_max_length() |
|
previous_seq_length = self.get_seq_length(layer_idx) |
|
if max_length is not None and previous_seq_length + new_seq_length > max_length: |
|
return max_length - new_seq_length |
|
return previous_seq_length |
|
|
|
def reorder_cache(self, beam_idx: mx.array) -> None: |
|
def _mamba(cache: PlamoMambaCache) -> PlamoMambaCache: |
|
return PlamoMambaCache( |
|
conv_state=mx.take(cache.conv_state, beam_idx, axis=0), |
|
ssm_state=mx.take(cache.ssm_state, beam_idx, axis=0), |
|
) |
|
|
|
def _attention(cache: PlamoAttentionCache) -> PlamoAttentionCache: |
|
return PlamoAttentionCache( |
|
key=mx.take(cache.key, beam_idx, axis=0), |
|
value=mx.take(cache.value, beam_idx, axis=0), |
|
) |
|
|
|
for i in range(len(self.cache)): |
|
if self.cache[i] is None: |
|
continue |
|
layer_cache = self.cache[i] |
|
if isinstance(layer_cache, PlamoMambaCache): |
|
self.cache[i] = _mamba(layer_cache) |
|
else: |
|
assert isinstance(layer_cache, PlamoAttentionCache) |
|
self.cache[i] = _attention(layer_cache) |
|
|
|
@property |
|
def seen_tokens(self) -> int | None: |
|
return None |
|
|
|
|
|
class DecoderInput(NamedTuple): |
|
hidden_states: mx.array |
|
attention_mask: Optional[mx.array] = None |
|
past_states: Optional[PlamoCache] = None |
|
output_hidden_states: Optional[bool] = False |
|
output_attentions: Optional[bool] = False |
|
gradient_checkpointing: bool = False |
|
input_ids: Optional[mx.array] = None |
|
|
|
|
|
class DecoderOutput(NamedTuple): |
|
hidden_states: mx.array |
|
all_hidden_states: Optional[tuple[mx.array, ...]] |
|
all_self_attns: Optional[tuple[mx.array, ...]] |
|
|
|
|
|
|
|
def _make_causal_mask(input_ids_shape: tuple[int, int], dtype: mx.Dtype, past_key_values_length: int = 0) -> mx.array: |
|
""" |
|
Make causal mask used for bi-directional self-attention. |
|
""" |
|
bsz, tgt_len = input_ids_shape |
|
mask = mx.full((tgt_len, tgt_len), float("-inf")) |
|
mask_cond = mx.arange(mask.shape[-1]) |
|
mask = mx.where(mask_cond < (mask_cond + 1).reshape((mask.shape[-1], 1)), 0, mask) |
|
mask = mask.astype(dtype) |
|
|
|
if past_key_values_length > 0: |
|
mask = mx.concatenate([mx.zeros((tgt_len, past_key_values_length), dtype=dtype), mask], axis=-1) |
|
return mx.broadcast_to(mask[None, None, :, :], (bsz, 1, tgt_len, tgt_len + past_key_values_length)) |
|
|
|
|
|
|
|
def _expand_mask(mask: mx.array, dtype: mx.Dtype, tgt_len: Optional[int] = None) -> mx.array: |
|
""" |
|
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`. |
|
""" |
|
bsz, src_len = mask.shape |
|
tgt_len = tgt_len if tgt_len is not None else src_len |
|
|
|
expanded_mask = mx.broadcast_to(mask[:, None, None, :], (bsz, 1, tgt_len, src_len)).astype(dtype) |
|
|
|
inverted_mask = 1.0 - expanded_mask |
|
|
|
return mx.where(inverted_mask.astype(mx.bool_), float("-inf"), inverted_mask) |
|
|
|
|
|
def _rms_norm(hidden_states: mx.array, weight: Optional[mx.array], eps: float, offset: float = 1.0) -> mx.array: |
|
input_dtype = hidden_states.dtype |
|
hidden_states = hidden_states.astype(mx.float32) |
|
variance = mx.power(hidden_states, 2).mean(-1, keepdims=True) |
|
hidden_states = hidden_states * mx.rsqrt(variance + eps) |
|
hidden_states = hidden_states.astype(input_dtype) |
|
if weight is not None: |
|
hidden_states = (offset + weight) * hidden_states |
|
return hidden_states |
|
|
|
|
|
class RMSNorm(nn.Module): |
|
def __init__( |
|
self, |
|
hidden_size: int, |
|
eps: float = 1e-6, |
|
offset: float = 1.0, |
|
) -> None: |
|
super().__init__() |
|
self.weight = mx.zeros(hidden_size) |
|
self.variance_epsilon = eps |
|
self.offset = offset |
|
|
|
def __call__(self, hidden_states: mx.array) -> mx.array: |
|
return _rms_norm(hidden_states, self.weight, self.variance_epsilon, offset=self.offset) |
|
|
|
|
|
def get_initial_dt_bias(num_heads: int) -> mx.array: |
|
dt_min = 0.001 |
|
dt_max = 0.1 |
|
dt = mx.exp(mx.random.uniform(shape=(num_heads,)) * (math.log(dt_max) - math.log(dt_min)) + math.log(dt_min)) |
|
dt = mx.clip(dt, a_min=1e-4, a_max=None) |
|
inv_dt = dt + mx.log(-mx.expm1(-dt)) |
|
return inv_dt |
|
|
|
|
|
def get_initial_A(num_heads: int) -> mx.array: |
|
A = mx.arange(1, num_heads + 1, dtype=mx.float32) |
|
return mx.log(A) |
|
|
|
|
|
def selective_state_update_ref( |
|
state, x, dt, A, B, C, D=None, z=None, dt_bias=None, dt_softplus=False |
|
) -> tuple[mx.array, mx.array]: |
|
""" |
|
Argument: |
|
state: (batch, dim, dstate) or (batch, nheads, dim, dstate) |
|
x: (batch, dim) or (batch, nheads, dim) |
|
dt: (batch, dim) or (batch, nheads, dim) |
|
A: (dim, dstate) or (nheads, dim, dstate) |
|
B: (batch, dstate) or (batch, ngroups, dstate) |
|
C: (batch, dstate) or (batch, ngroups, dstate) |
|
D: (dim,) or (nheads, dim) |
|
z: (batch, dim) or (batch, nheads, dim) |
|
dt_bias: (dim,) or (nheads, dim) |
|
Return: |
|
out: (batch, dim) or (batch, nheads, dim) |
|
""" |
|
has_heads = state.ndim > 3 |
|
if state.ndim == 3: |
|
state = mx.expand_dims(state, 1) |
|
if x.ndim == 2: |
|
x = mx.expand_dims(x, 1) |
|
if dt.ndim == 2: |
|
dt = mx.expand_dims(dt, 1) |
|
if A.ndim == 2: |
|
A = mx.expand_dims(A, 0) |
|
if B.ndim == 2: |
|
B = mx.expand_dims(B, 1) |
|
if C.ndim == 2: |
|
C = mx.expand_dims(C, 1) |
|
if D is not None and D.ndim == 1: |
|
D = mx.expand_dims(D, 0) |
|
if z is not None and z.ndim == 2: |
|
z = mx.expand_dims(z, 1) |
|
if dt_bias is not None and dt_bias.ndim == 1: |
|
dt_bias = mx.expand_dims(dt_bias, 0) |
|
batch, nheads, dim, dstate = state.shape |
|
assert x.shape == (batch, nheads, dim) |
|
assert dt.shape == x.shape |
|
assert A.shape == (nheads, dim, dstate) |
|
ngroups = B.shape[1] |
|
assert nheads % ngroups == 0, "nheads must be divisible by ngroups" |
|
assert B.shape == (batch, ngroups, dstate) |
|
assert C.shape == B.shape |
|
if D is not None: |
|
assert D.shape == (nheads, dim) |
|
if z is not None: |
|
assert z.shape == x.shape |
|
if dt_bias is not None: |
|
assert dt_bias.shape == (nheads, dim) |
|
dt = dt + dt_bias |
|
dt = nn.softplus(dt) if dt_softplus else dt |
|
dA = mx.exp(mx.expand_dims(dt, axis=-1) * A) |
|
B = mx.reshape( |
|
mx.tile(mx.expand_dims(B, axis=2), (1, 1, nheads // ngroups, 1)), |
|
(batch, nheads, dstate), |
|
) |
|
C = mx.reshape( |
|
mx.tile(mx.expand_dims(C, axis=2), (1, 1, nheads // ngroups, 1)), |
|
(batch, nheads, dstate), |
|
) |
|
dB = mx.expand_dims(dt, axis=-1) * mx.expand_dims(B, axis=-2) |
|
state = state * dA + dB * mx.expand_dims(x, axis=-1) |
|
out = mx.einsum("bhdn,bhn->bhd", state.astype(C.dtype), C) |
|
if D is not None: |
|
out += (x * D).astype(out.dtype) |
|
out = (out if z is None else out * nn.silu(z)).astype(x.dtype) |
|
if not has_heads: |
|
out = out.squeeze(1) |
|
return out, state |
|
|
|
|
|
def ssd_update_state( |
|
ssm_state: mx.array, |
|
x: mx.array, |
|
dt: mx.array, |
|
A: mx.array, |
|
B: mx.array, |
|
C: mx.array, |
|
D: mx.array, |
|
z: mx.array, |
|
dt_bias: mx.array, |
|
dt_softplus: bool, |
|
) -> tuple[mx.array, mx.array]: |
|
assert ssm_state.dtype == mx.float32 |
|
dtype = x.dtype |
|
|
|
hidden_size_per_head = x.shape[-1] |
|
d_state = B.shape[-1] |
|
A = mx.broadcast_to(A[:, None, None], (A.shape[0], hidden_size_per_head, d_state)).astype(mx.float32) |
|
dt = mx.broadcast_to(dt[..., None], (dt.shape[0], dt.shape[1], hidden_size_per_head)) |
|
dt_bias = mx.broadcast_to(dt_bias[:, None], (dt_bias.shape[0], hidden_size_per_head)) |
|
D = mx.broadcast_to(D[:, None], (D.shape[0], hidden_size_per_head)) |
|
out, ssm_state = selective_state_update_ref( |
|
ssm_state, |
|
x.astype(dtype), |
|
dt.astype(dtype), |
|
A.astype(mx.float32), |
|
B.astype(dtype), |
|
C.astype(dtype), |
|
D.astype(mx.float32), |
|
z.astype(dtype), |
|
dt_bias.astype(mx.float32), |
|
dt_softplus=dt_softplus, |
|
) |
|
return out[:, None], ssm_state |
|
|
|
|
|
def _ssd_chunk_scan_combined_naive( |
|
x: mx.array, |
|
dt: mx.array, |
|
A: mx.array, |
|
B: mx.array, |
|
C: mx.array, |
|
D: mx.array, |
|
z: mx.array, |
|
dt_bias: mx.array, |
|
dt_softplus: bool, |
|
seq_idx: mx.array | None, |
|
ssm_state: mx.array, |
|
) -> tuple[mx.array, mx.array]: |
|
assert ssm_state.dtype == mx.float32 |
|
length = x.shape[1] |
|
ys = [] |
|
for i in range(length): |
|
if i != 0 and seq_idx is not None: |
|
ssm_state = mx.where( |
|
mx.array(seq_idx[:, i - 1] != seq_idx[:, i])[:, None, None, None], |
|
mx.zeros_like(ssm_state), |
|
ssm_state, |
|
) |
|
y, ssm_state = ssd_update_state( |
|
ssm_state, |
|
x[:, i], |
|
dt[:, i], |
|
A, |
|
B[:, i], |
|
C[:, i], |
|
D if D.ndim == 1 else D[:, i], |
|
z=z[:, i], |
|
dt_bias=dt_bias, |
|
dt_softplus=dt_softplus, |
|
) |
|
ys.append(y) |
|
return mx.concatenate(ys, axis=1), ssm_state |
|
|
|
|
|
def ssd_chunk_scan_combined( |
|
x: mx.array, |
|
dt: mx.array, |
|
A: mx.array, |
|
B: mx.array, |
|
C: mx.array, |
|
chunk_size: int, |
|
D: mx.array, |
|
z: mx.array, |
|
dt_bias: mx.array, |
|
dt_softplus: bool, |
|
return_final_states: bool, |
|
seq_idx: mx.array | None, |
|
ssm_state: mx.array | None, |
|
) -> tuple[mx.array, mx.array] | mx.array: |
|
if seq_idx is not None: |
|
assert seq_idx.dtype == mx.int32 |
|
assert ssm_state is None |
|
assert not return_final_states |
|
if ssm_state is not None: |
|
assert ssm_state.dtype == mx.float32 |
|
assert seq_idx is None |
|
""" |
|
state will be updates by following: |
|
``` |
|
dt = softplus(dt) |
|
dA = exp(dt * A) |
|
state_next = state * dA + dB * x |
|
``` |
|
To avoid updating state, we set dt to -inf and x to 0 |
|
because `softplus(-inf) = 0` and `exp(0) = 1` |
|
""" |
|
if ssm_state is None: |
|
bsize, _, num_heads, channel = x.shape |
|
state = B.shape[-1] |
|
ssm_state = mx.zeros((bsize, num_heads, channel, state), dtype=mx.float32) |
|
tmp, ssm_state = _ssd_chunk_scan_combined_naive( |
|
x, |
|
dt, |
|
A, |
|
B, |
|
C, |
|
D, |
|
z=z, |
|
dt_bias=dt_bias, |
|
dt_softplus=dt_softplus, |
|
seq_idx=seq_idx, |
|
ssm_state=ssm_state, |
|
) |
|
if return_final_states: |
|
return tmp, ssm_state |
|
else: |
|
return tmp |
|
|
|
|
|
def _causal_conv1d( |
|
conv_state: mx.array | None, weight: mx.array, x: mx.array, seq_idx: mx.array | None |
|
) -> tuple[mx.array, mx.array | None]: |
|
dtype = x.dtype |
|
if conv_state is not None: |
|
dtype = conv_state.dtype |
|
assert seq_idx is None |
|
if seq_idx is not None: |
|
assert seq_idx.dtype == mx.int32 |
|
assert conv_state is None |
|
weight = weight.astype(dtype) |
|
x = x.astype(dtype) |
|
|
|
return_final_states = conv_state is not None |
|
if conv_state is None: |
|
bsize = x.shape[0] |
|
dim = weight.shape[0] |
|
d_conv = weight.shape[-1] |
|
conv_state = mx.zeros((bsize, dim, d_conv - 1), dtype=x.dtype) |
|
length = x.shape[-1] |
|
out = mx.zeros_like(x) |
|
for i in range(length): |
|
if i != 0 and seq_idx is not None: |
|
conv_state = mx.where( |
|
seq_idx[:, i - 1][:, None, None] != seq_idx[:, i][:, None, None], |
|
mx.zeros_like(conv_state), |
|
conv_state, |
|
) |
|
out[:, :, i : i + 1], conv_state = _causal_conv1d_update(conv_state, weight, x[:, :, i : i + 1]) |
|
x = out |
|
if return_final_states: |
|
return x, conv_state |
|
else: |
|
return x, None |
|
|
|
|
|
def causal_conv1d_update( |
|
x, conv_state, weight, bias=None, activation=None, cache_seqlens=None |
|
) -> tuple[mx.array, mx.array]: |
|
""" |
|
x: (batch, dim) or (batch, dim, seqlen) |
|
conv_state: (batch, dim, state_len), where state_len >= width - 1 |
|
weight: (dim, width) |
|
bias: (dim,) |
|
cache_seqlens: (batch,), dtype int32. |
|
If not None, the conv_state is treated as a circular buffer. |
|
The conv_state will be updated by copying x to the conv_state starting at the index |
|
@cache_seqlens % state_len before performing the convolution. |
|
|
|
out: (batch, dim) or (batch, dim, seqlen) |
|
""" |
|
if activation not in [None, "silu", "swish"]: |
|
raise NotImplementedError("activation must be None, silu, or swish") |
|
dtype_in = x.dtype |
|
unsqueeze = x.ndim == 2 |
|
if unsqueeze: |
|
x = x.unsqueeze(-1) |
|
batch, dim, seqlen = x.shape |
|
width = weight.shape[1] |
|
state_len = conv_state.shape[-1] |
|
assert conv_state.shape == (batch, dim, state_len) |
|
assert weight.shape == (dim, width) |
|
if cache_seqlens is None: |
|
x_new = mx.concatenate([conv_state, x], axis=-1).astype(weight.dtype) |
|
conv_state = x_new[:, :, -state_len:] |
|
else: |
|
width_idx = mx.expand_dims(mx.arange(-(width - 1), 0, dtype=mx.int64), axis=0) + mx.expand_dims( |
|
cache_seqlens, axis=1 |
|
) |
|
width_idx = mx.expand_dims(mx.remainder(width_idx, state_len), axis=1) |
|
width_idx = mx.broadcast_to(width_idx, (width_idx.shape[0], dim, width_idx.shape[2])) |
|
x_new = mx.concatenate([conv_state.gather(2, width_idx), x], axis=-1) |
|
x_new = x_new.astype(weight.dtype) |
|
copy_idx = mx.expand_dims(mx.arange(seqlen, dtype=mx.int64), axis=0) + mx.expand_dims(cache_seqlens, axis=1) |
|
copy_idx = mx.expand_dims(mx.remainder(copy_idx, state_len), axis=1) |
|
copy_idx = mx.broadcast_to(copy_idx, (copy_idx.shape[0], dim, copy_idx.shape[2])) |
|
conv_state.scatter_(2, copy_idx, x) |
|
assert bias is None |
|
|
|
out = mx.conv1d( |
|
x_new.transpose(0, 2, 1), |
|
mx.expand_dims(weight, axis=2), |
|
padding=0, |
|
groups=dim, |
|
).transpose(0, 2, 1)[:, :, -seqlen:] |
|
if unsqueeze: |
|
out = out.squeeze(-1) |
|
return (out if activation is None else nn.silu(out)).astype(dtype_in), conv_state |
|
|
|
|
|
def _causal_conv1d_update(conv_state: mx.array, weight: mx.array, xBC: mx.array) -> tuple[mx.array, mx.array]: |
|
dtype = conv_state.dtype |
|
xBC = xBC.astype(dtype) |
|
weight = weight.astype(dtype) |
|
|
|
x, conv_state = causal_conv1d_update( |
|
x=xBC, |
|
conv_state=conv_state, |
|
weight=weight[:, :, 0], |
|
activation="silu", |
|
) |
|
return x, conv_state |
|
|
|
|
|
|
|
def causal_conv1d(x, weight, bias=None, activation=None): |
|
""" |
|
MLX implementation of a causal depthwise 1D convolution. |
|
Args: |
|
x (mx.array): Input tensor of shape (batch, channels, seq_len). |
|
weight (mx.array): Convolution filters of shape (channels, kernel_width). |
|
Each channel has its own filter (depthwise conv). |
|
bias (mx.array, optional): Bias for each channel of shape (channels,). |
|
activation (str, optional): Activation to apply ("silu" or "swish" supported). |
|
Returns: |
|
mx.array: Output tensor of shape (batch, channels, seq_len). |
|
""" |
|
x = mx.array(x) if not isinstance(x, mx.array) else x |
|
weight = mx.array(weight) if not isinstance(weight, mx.array) else weight |
|
if bias is not None: |
|
bias = mx.array(bias) if not isinstance(bias, mx.array) else bias |
|
|
|
batch, channels, seq_len = x.shape |
|
_, kernel_width = weight.shape |
|
|
|
|
|
|
|
w = weight.reshape((channels, 1, kernel_width)) |
|
|
|
|
|
if kernel_width > 1: |
|
pad_shape = (batch, channels, kernel_width - 1) |
|
pad_zeros = mx.zeros(pad_shape, dtype=x.dtype) |
|
x_padded = mx.concatenate([pad_zeros, x], axis=2) |
|
else: |
|
x_padded = x |
|
|
|
|
|
y = mx.conv1d(x_padded, w, stride=1, padding=0, groups=channels) |
|
|
|
|
|
|
|
|
|
if bias is not None: |
|
y = y + bias.reshape((1, channels, 1)) |
|
|
|
|
|
if activation in ("silu", "swish"): |
|
|
|
y = y * mx.sigmoid(y) |
|
elif activation is not None: |
|
raise ValueError(f"Unsupported activation: {activation}") |
|
|
|
return y |
|
|
|
|
|
class Mamba(nn.Module): |
|
def __init__(self, config: ModelArgs, layer_idx: int) -> None: |
|
super().__init__() |
|
self.config = config |
|
self.layer_idx = layer_idx |
|
self.hidden_size = config.hidden_size |
|
self.d_state = config.mamba_d_state |
|
self.d_conv = config.mamba_d_conv |
|
self.chunk_size = config.mamba_chunk_size |
|
self.num_heads = config.mamba_num_heads |
|
|
|
self.hidden_size_per_head = config.hidden_size_per_head |
|
|
|
self.intermediate_size = self.num_heads * self.hidden_size_per_head |
|
|
|
self.in_proj = nn.Linear(self.hidden_size, 2 * self.intermediate_size, bias=False) |
|
self.conv1d = nn.Conv1d( |
|
in_channels=self.intermediate_size, |
|
out_channels=self.intermediate_size, |
|
bias=False, |
|
kernel_size=self.d_conv, |
|
groups=self.intermediate_size, |
|
padding=0, |
|
) |
|
self.dt_dim = max(64, self.hidden_size // 16) |
|
|
|
|
|
|
|
self.bcdt_proj = nn.Linear( |
|
self.intermediate_size, |
|
self.dt_dim + 2 * self.d_state, |
|
bias=False, |
|
) |
|
self.dt_proj = nn.Linear(self.dt_dim, self.num_heads, bias=False) |
|
|
|
self.dt_bias = get_initial_dt_bias(self.num_heads) |
|
self.A_log = get_initial_A(self.num_heads) |
|
self.D = mx.ones(self.num_heads, dtype=mx.float32) |
|
|
|
|
|
self.dt_norm_weight = mx.ones(self.dt_dim) |
|
self.B_norm_weight = mx.ones(self.d_state) |
|
self.C_norm_weight = mx.ones(self.d_state) |
|
|
|
self.out_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False) |
|
|
|
def _no_weight_decay_param_names(self) -> set[str]: |
|
return set(["D", "dt_bias", "A_log"]) |
|
|
|
def __call__( |
|
self, |
|
hidden_states: mx.array, |
|
attention_mask: Optional[mx.array] = None, |
|
past_states: Optional[PlamoCache] = None, |
|
) -> tuple[mx.array, Optional[PlamoCache]]: |
|
bsize, length, _ = hidden_states.shape |
|
is_update = length == 1 and past_states is not None |
|
|
|
bool_mask: mx.array | None = None |
|
seq_idx: mx.array | None = None |
|
if attention_mask is not None: |
|
if len(attention_mask.shape) == 2: |
|
attention_mask = mx.broadcast_to( |
|
attention_mask[None, None], |
|
(bsize, 1, attention_mask.shape[0], attention_mask.shape[1]), |
|
) |
|
assert len(attention_mask.shape) == 4 |
|
|
|
if past_states is None: |
|
|
|
bool_mask_4d = mx.array(attention_mask == 0, dtype=mx.bool_) |
|
is_first_token = _is_first_token(bool_mask_4d)[:, 0, :] |
|
seq_idx = mx.cumsum(is_first_token, axis=-1) - 1 |
|
seq_idx = seq_idx.astype(mx.int32) |
|
|
|
|
|
|
|
attention_mask = attention_mask[:, 0, -length:, -length:] |
|
bool_mask = mx.array(mx.diagonal(attention_mask, axis1=-2, axis2=-1) == 0) |
|
|
|
conv_state: mx.array | None |
|
ssm_state: mx.array | None |
|
if past_states is None: |
|
conv_state = None |
|
ssm_state = None |
|
elif past_states[self.layer_idx] is None: |
|
conv_state = mx.zeros( |
|
(bsize, self.intermediate_size, self.d_conv - 1), |
|
dtype=hidden_states.dtype, |
|
) |
|
ssm_state = mx.zeros( |
|
(bsize, self.num_heads, self.hidden_size_per_head, self.d_state), |
|
dtype=mx.float32, |
|
) |
|
else: |
|
c = past_states[self.layer_idx] |
|
assert isinstance(c, PlamoMambaCache) |
|
conv_state = c.conv_state |
|
ssm_state = c.ssm_state |
|
|
|
zx = self.in_proj(hidden_states) |
|
zx = zx.reshape(bsize, length, self.num_heads, -1) |
|
|
|
|
|
z, x = mx.split( |
|
zx, |
|
[ |
|
self.hidden_size_per_head, |
|
], |
|
axis=-1, |
|
) |
|
|
|
|
|
x = x.reshape(bsize, length, -1).transpose(0, 2, 1) |
|
if bool_mask is not None: |
|
x = mx.where(bool_mask[:, None, :], x, 0.0) |
|
if is_update: |
|
assert conv_state is not None |
|
x, conv_state = _causal_conv1d_update(conv_state, self.conv1d.weight, x) |
|
else: |
|
x, conv_state = _causal_conv1d(conv_state, self.conv1d.weight, x, seq_idx=seq_idx) |
|
x = x.astype(hidden_states.dtype) |
|
x = x.transpose(0, 2, 1) |
|
x = x.reshape(bsize, length, -1) |
|
|
|
|
|
|
|
|
|
BCdt = self.bcdt_proj(x) |
|
x = x.reshape(bsize, length, self.num_heads, -1) |
|
B, C, dt = mx.split(BCdt, [self.d_state, self.d_state * 2], axis=-1) |
|
B = B[:, :, None, :] |
|
C = C[:, :, None, :] |
|
|
|
A = -mx.exp(self.A_log.astype(mx.float32)) |
|
dt = _rms_norm(dt, None, self.config.rms_norm_eps) * self.dt_norm_weight[None, None, :] |
|
B = _rms_norm(B, None, self.config.rms_norm_eps) * self.B_norm_weight[None, None, None, :] |
|
C = _rms_norm(C, None, self.config.rms_norm_eps) * self.C_norm_weight[None, None, None, :] |
|
|
|
|
|
dt = self.dt_proj(dt)[..., None] |
|
|
|
|
|
B = mx.broadcast_to(B, (B.shape[0], B.shape[1], self.num_heads, B.shape[3])) |
|
C = mx.broadcast_to(C, (C.shape[0], C.shape[1], self.num_heads, C.shape[3])) |
|
|
|
if bool_mask is not None: |
|
""" |
|
state will be updates by following: |
|
``` |
|
dt = softplus(dt) |
|
dA = exp(dt * A) |
|
state_next = state * dA + dB * x |
|
``` |
|
To avoid updating state, we set dt to -inf and x to 0 |
|
because `softplus(-inf) = 0` and `exp(0) = 1` |
|
""" |
|
dt = mx.where(bool_mask[:, :, None, None], dt, float("-inf")) |
|
x = mx.where(bool_mask[:, :, None, None], x, 0.0) |
|
|
|
|
|
if is_update: |
|
assert ssm_state is not None |
|
out, ssm_state = ssd_update_state( |
|
ssm_state, |
|
x[:, 0], |
|
dt[:, 0].reshape(bsize, -1), |
|
A, |
|
B[:, 0], |
|
C[:, 0], |
|
D=self.D, |
|
z=z[:, 0], |
|
dt_bias=self.dt_bias, |
|
dt_softplus=True, |
|
) |
|
else: |
|
tmp = ssd_chunk_scan_combined( |
|
x, |
|
dt.reshape(bsize, length, -1), |
|
A, |
|
B, |
|
C, |
|
self.chunk_size, |
|
D=self.D, |
|
z=z, |
|
dt_bias=self.dt_bias, |
|
dt_softplus=True, |
|
return_final_states=past_states is not None, |
|
seq_idx=seq_idx, |
|
ssm_state=ssm_state, |
|
) |
|
if past_states is not None: |
|
out, ssm_state = tmp |
|
else: |
|
assert isinstance(tmp, mx.array) |
|
out = tmp |
|
|
|
y = self.out_proj(out.reshape(bsize, length, -1)) |
|
|
|
if past_states is not None: |
|
assert ssm_state is not None |
|
assert conv_state is not None |
|
past_states.update_mamba(conv_state, ssm_state, self.layer_idx) |
|
|
|
return y, past_states |
|
|
|
|
|
def swa_mask(q_len: int, kv_len: int, window_size: int) -> mx.array: |
|
max_len = max(q_len, kv_len) |
|
mask = mx.tril( |
|
mx.triu(mx.ones((max_len, max_len), dtype=mx.bool_), k=-window_size), |
|
k=window_size, |
|
) |
|
return mask[-q_len:, -kv_len:] |
|
|
|
|
|
class Attention(nn.Module): |
|
def __init__(self, config: ModelArgs, layer_idx: int) -> None: |
|
super().__init__() |
|
self.config = config |
|
self.layer_idx = layer_idx |
|
self.hidden_size = config.hidden_size |
|
head_dim = config.hidden_size_per_head |
|
self.max_position_embeddings = config.max_position_embeddings |
|
self.scale = head_dim**-0.5 |
|
|
|
self.q_num_heads = config.num_attention_heads |
|
self.qk_dim = self.v_dim = head_dim |
|
self.k_num_heads = self.v_num_heads = config.num_key_value_heads |
|
assert self.q_num_heads % self.k_num_heads == 0 |
|
self.n_group = self.q_num_heads // self.k_num_heads |
|
|
|
self.q_proj_dim = self.q_num_heads * self.qk_dim |
|
self.k_proj_dim = self.k_num_heads * self.qk_dim |
|
self.v_proj_dim = self.k_num_heads * self.v_dim |
|
self.qkv_proj = nn.Linear( |
|
self.hidden_size, |
|
self.q_proj_dim + self.k_proj_dim + self.v_proj_dim, |
|
bias=False, |
|
) |
|
self.o_proj = nn.Linear(self.q_num_heads * self.v_dim, self.hidden_size, bias=False) |
|
|
|
self.q_weight = mx.ones((self.q_num_heads, self.qk_dim)) |
|
self.k_weight = mx.ones((self.k_num_heads, self.qk_dim)) |
|
|
|
self.rotary_emb = RotaryEmbedding(self.qk_dim, max_position_embeddings=self.config.attention_window_size) |
|
|
|
def __call__( |
|
self, |
|
hidden_states: mx.array, |
|
attention_mask: Optional[mx.array] = None, |
|
past_states: Optional[PlamoCache] = None, |
|
output_attentions: bool = False, |
|
) -> tuple[mx.array, Optional[mx.array], Optional[PlamoCache]]: |
|
bsz, q_len, _ = hidden_states.shape |
|
|
|
qkv = self.qkv_proj(hidden_states) |
|
query_states, key_states, value_states = mx.split( |
|
qkv, [self.q_proj_dim, self.q_proj_dim + self.k_proj_dim], axis=-1 |
|
) |
|
query_states = query_states.reshape(bsz, q_len, self.q_num_heads, self.qk_dim).transpose(0, 2, 1, 3) |
|
key_states = key_states.reshape(bsz, q_len, self.k_num_heads, self.qk_dim).transpose(0, 2, 1, 3) |
|
value_states = value_states.reshape(bsz, q_len, self.v_num_heads, self.v_dim).transpose(0, 2, 1, 3) |
|
|
|
attn_dtype = query_states.dtype |
|
|
|
query_states = _rms_norm(query_states, None, 1e-6) * self.q_weight[None, :, None] |
|
key_states = _rms_norm(key_states, None, 1e-6) * self.k_weight[None, :, None] |
|
|
|
if past_states is not None: |
|
|
|
key_states_new = key_states |
|
value_states_new = value_states |
|
key_states, value_states = past_states.append_kv(key_states, value_states, self.layer_idx) |
|
past_states.update_attention(key_states_new, value_states_new, self.layer_idx) |
|
|
|
kv_seq_len = key_states.shape[-2] |
|
position_ids = mx.arange(kv_seq_len, dtype=mx.int64)[None] |
|
q_position_ids = position_ids[:, -query_states.shape[2] :] |
|
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) |
|
query_states = _rotary_pos_emb(query_states, cos, sin, q_position_ids) |
|
key_states = _rotary_pos_emb(key_states, cos, sin, position_ids) |
|
|
|
|
|
|
|
assert self.k_num_heads == self.v_num_heads |
|
key_states = mx.tile(key_states, (1, self.n_group, 1, 1)) |
|
value_states = mx.tile(value_states, (1, self.n_group, 1, 1)) |
|
|
|
full_attn = self.layer_idx in self.config.full_attention_idx |
|
|
|
query_states = query_states.astype(attn_dtype) |
|
key_states = key_states.astype(attn_dtype) |
|
value_states = value_states.astype(attn_dtype) |
|
if attention_mask is not None and attention_mask.dtype != bool: |
|
attention_mask = attention_mask.astype(attn_dtype) |
|
if attention_mask is None: |
|
if not full_attn: |
|
assert key_states.shape[2] <= self.config.attention_window_size + 1 |
|
mask = create_attention_mask(hidden_states) |
|
attn_output = mx.fast.scaled_dot_product_attention( |
|
query_states, |
|
key_states, |
|
value_states, |
|
scale=self.scale, |
|
mask=mask, |
|
) |
|
else: |
|
if attention_mask.dtype == bool: |
|
attention_mask = mx.where(attention_mask, mx.array(0.0, dtype=mx.float16), float("-inf")) |
|
if len(attention_mask.shape) == 2: |
|
attention_mask = attention_mask[None, None] |
|
assert len(attention_mask.shape) == 4 |
|
|
|
if not full_attn: |
|
m_swa = swa_mask( |
|
query_states.shape[2], |
|
key_states.shape[2], |
|
self.config.attention_window_size, |
|
) |
|
|
|
m_swa = m_swa[None, None] |
|
attention_mask = attention_mask[:, :, -query_states.shape[2] :, -key_states.shape[2] :] |
|
attention_mask = mx.where(m_swa, attention_mask, float("-inf")) |
|
|
|
|
|
|
|
bool_mask = mx.logical_not(mx.isneginf(attention_mask)) |
|
valid_tokens = mx.sum(bool_mask, axis=-1).astype(mx.bool_) |
|
attention_mask = mx.where(valid_tokens[..., None], attention_mask, float(0.0)) |
|
attn_output = mx.fast.scaled_dot_product_attention( |
|
query_states, |
|
key_states, |
|
value_states, |
|
scale=self.scale, |
|
mask=attention_mask, |
|
) |
|
|
|
attn_output = attn_output.transpose(0, 2, 1, 3) |
|
|
|
attn_output = attn_output.reshape(bsz, q_len, self.q_num_heads * self.v_dim) |
|
attn_output = self.o_proj(attn_output) |
|
|
|
if not output_attentions: |
|
attn_weights = None |
|
|
|
return attn_output, attn_weights, past_states |
|
|
|
|
|
class MLP(nn.Module): |
|
def __init__(self, config: ModelArgs) -> None: |
|
super().__init__() |
|
self.config = config |
|
self.hidden_size = config.hidden_size |
|
self.intermediate_size = config.intermediate_size |
|
self.gate_up_proj = nn.Linear(self.hidden_size, self.intermediate_size * 2, bias=False) |
|
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False) |
|
|
|
def __call__(self, x: mx.array) -> mx.array: |
|
h = self.gate_up_proj(x) |
|
h = _swiglu(h) |
|
return self.down_proj(h) |
|
|
|
|
|
class PlamoDecoderLayer(nn.Module): |
|
def __init__(self, config: ModelArgs, is_mamba: bool, layer_idx: int) -> None: |
|
super().__init__() |
|
self.config = config |
|
self.hidden_size = config.hidden_size |
|
self.is_mamba = is_mamba |
|
self.mixer: nn.Module |
|
if is_mamba: |
|
self.mixer = Mamba(config, layer_idx) |
|
else: |
|
self.mixer = Attention(config, layer_idx) |
|
self.mlp = MLP(config) |
|
""" |
|
Notes: The model performance was degraded when setting all offsets to 1. |
|
""" |
|
self.pre_mixer_norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps, offset=1.0) |
|
self.post_mixer_norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps, offset=1.0 / 5) |
|
self.pre_mlp_norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps, offset=1.0) |
|
self.post_mlp_norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps, offset=1.0 / (5**1.5)) |
|
|
|
def __call__( |
|
self, |
|
hidden_states: mx.array, |
|
attention_mask: Optional[mx.array] = None, |
|
past_state: Optional[PlamoCache] = None, |
|
output_attentions: Optional[bool] = False, |
|
) -> tuple[Any, ...]: |
|
|
|
residual = hidden_states |
|
hidden_states = self.pre_mixer_norm(hidden_states) |
|
|
|
|
|
if self.is_mamba: |
|
hidden_states_sa, present_key_value = self.mixer( |
|
hidden_states=hidden_states, |
|
attention_mask=attention_mask, |
|
past_states=past_state, |
|
) |
|
self_attn_weights = None |
|
else: |
|
hidden_states_sa, self_attn_weights, present_key_value = self.mixer( |
|
hidden_states=hidden_states, |
|
attention_mask=attention_mask, |
|
past_states=past_state, |
|
output_attentions=output_attentions, |
|
) |
|
|
|
hidden_states_sa = self.post_mixer_norm(hidden_states_sa) |
|
hidden_states = residual + hidden_states_sa |
|
|
|
residual = hidden_states |
|
hidden_states = self.pre_mlp_norm(hidden_states) |
|
|
|
|
|
hidden_states_mlp = self.mlp(hidden_states) |
|
|
|
|
|
hidden_states_mlp = self.post_mlp_norm(hidden_states_mlp) |
|
hidden_states = residual + hidden_states_mlp |
|
|
|
outputs: Any = (hidden_states,) |
|
|
|
if output_attentions: |
|
outputs += (self_attn_weights,) |
|
|
|
return outputs |
|
|
|
|
|
def is_mamba(config: ModelArgs, i: int) -> bool: |
|
if not config.mamba_enabled: |
|
return False |
|
assert config.mamba_step > 1 |
|
assert i < config.num_hidden_layers |
|
|
|
if config.num_hidden_layers <= (config.mamba_step // 2): |
|
|
|
return i != config.num_hidden_layers - 1 |
|
return (i % config.mamba_step) != (config.mamba_step // 2) |
|
|
|
|
|
class PlamoDecoder(nn.Module): |
|
def __init__(self, config: ModelArgs) -> None: |
|
super().__init__() |
|
|
|
self.layers = [ |
|
PlamoDecoderLayer(config, is_mamba=is_mamba(config, i), layer_idx=i) |
|
for i in range(config.num_hidden_layers) |
|
] |
|
self.gradient_checkpointing = False |
|
|
|
def __call__(self, x: DecoderInput) -> DecoderOutput: |
|
all_hidden_states: Optional[tuple[mx.array, ...]] = () if x.output_hidden_states else None |
|
all_self_attns: Optional[tuple[mx.array, ...]] = () if x.output_attentions else None |
|
hidden_states = x.hidden_states |
|
|
|
for decoder_layer in self.layers: |
|
if x.output_hidden_states: |
|
assert all_hidden_states is not None |
|
all_hidden_states += (hidden_states,) |
|
|
|
if self.training and x.gradient_checkpointing: |
|
layer_outputs = self._gradient_checkpointing_func( |
|
decoder_layer.__call__, |
|
hidden_states, |
|
x.attention_mask, |
|
x.past_states, |
|
x.output_attentions, |
|
) |
|
else: |
|
layer_outputs = decoder_layer( |
|
hidden_states, |
|
attention_mask=x.attention_mask, |
|
past_state=x.past_states, |
|
output_attentions=x.output_attentions, |
|
) |
|
|
|
hidden_states = layer_outputs[0] |
|
|
|
if x.output_attentions: |
|
assert layer_outputs[1] is not None |
|
assert all_self_attns is not None |
|
all_self_attns += (layer_outputs[1],) |
|
return DecoderOutput(hidden_states, all_hidden_states, all_self_attns) |
|
|
|
|
|
class ModelOutput(OrderedDict): |
|
def __init__(self, *args, **kwargs): |
|
super().__init__(*args, **kwargs) |
|
|
|
def __getitem__(self, k): |
|
if isinstance(k, str): |
|
inner_dict = dict(self.items()) |
|
return inner_dict[k] |
|
else: |
|
return self.to_tuple()[k] |
|
|
|
def to_tuple(self) -> tuple[Any]: |
|
""" |
|
Convert self to a tuple containing all the attributes/keys that are not `None`. |
|
""" |
|
return tuple(self[k] for k in self.keys()) |
|
|
|
|
|
class BaseModelOutputWithPast(ModelOutput): |
|
""" |
|
Base class for model's outputs that may also contain a past key/values (to speed up sequential decoding). |
|
|
|
Args: |
|
last_hidden_state (:obj:`mx.array` of shape :obj:`(batch_size, sequence_length, hidden_size)`): |
|
Sequence of hidden-states at the output of the last layer of the model. |
|
|
|
If :obj:`past_key_values` is used only the last hidden-state of the sequences of shape |
|
:obj:`(batch_size, 1, hidden_size)` is output. |
|
past_key_values (:obj:`list[mx.array]`, `optional`, returned when ``use_cache=True`` is passed or when ``config.use_cache=True``): |
|
list of :obj:`mx.array` of length :obj:`config.n_layers`, with each tensor of shape |
|
:obj:`(2, batch_size, num_heads, sequence_length, embed_size_per_head)`). |
|
|
|
Contains pre-computed hidden-states (key and values in the attention blocks) that can be used (see |
|
``past_key_values`` input) to speed up sequential decoding. |
|
hidden_states (:obj:`tuple(mx.array)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``): |
|
Tuple of :obj:`mx.array` (one for the output of the embeddings + one for the output of each layer) |
|
of shape :obj:`(batch_size, sequence_length, hidden_size)`. |
|
|
|
Hidden-states of the model at the output of each layer plus the initial embedding outputs. |
|
attentions (:obj:`tuple(mx.array)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``): |
|
Tuple of :obj:`mx.array` (one for each layer) of shape |
|
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`. |
|
|
|
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention |
|
heads. |
|
""" |
|
|
|
def __init__(self, *args, **kwargs) -> None: |
|
super().__init__(*args, **kwargs) |
|
self.last_hidden_state: mx.array = kwargs.pop("last_hidden_state") |
|
self.past_key_values: Optional[tuple[tuple[mx.array]]] = kwargs.pop("past_key_values", None) |
|
self.hidden_states: Optional[tuple[mx.array, ...]] = kwargs.pop("hidden_states", None) |
|
self.attentions: Optional[tuple[mx.array, ...]] = kwargs.pop("attentions", None) |
|
|
|
|
|
class CausalLMOutputWithPast(ModelOutput): |
|
""" |
|
Base class for causal language model (or autoregressive) outputs. |
|
|
|
Args: |
|
loss (`mx.array` of shape `(1,)`, *optional*, returned when `labels` is provided): |
|
Language modeling loss (for next-token prediction). |
|
logits (`mx.array` of shape `(batch_size, sequence_length, config.vocab_size)`): |
|
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). |
|
past_key_values (`tuple(tuple(mx.array))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): |
|
Tuple of `tuple(mx.array)` of length `config.n_layers`, with each tuple having 2 tensors of shape |
|
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) |
|
|
|
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see |
|
`past_key_values` input) to speed up sequential decoding. |
|
hidden_states (`tuple(mx.array)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): |
|
Tuple of `mx.array` (one for the output of the embeddings, if the model has an embedding layer, + |
|
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. |
|
|
|
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. |
|
attentions (`tuple(mx.array)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): |
|
Tuple of `mx.array` (one for each layer) of shape `(batch_size, num_heads, sequence_length, |
|
sequence_length)`. |
|
|
|
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention |
|
heads. |
|
""" |
|
|
|
def __init__(self, *args, **kwargs) -> None: |
|
super().__init__(*args, **kwargs) |
|
|
|
self.loss: Optional[mx.array] = kwargs.pop("loss", None) |
|
self.logits: mx.array | None = kwargs.pop("logits", None) |
|
self.past_key_values: Optional[tuple[tuple[mx.array]]] = kwargs.pop("past_key_values", None) |
|
self.hidden_states: Optional[tuple[mx.array, ...]] = kwargs.pop("hidden_states", None) |
|
self.attentions: Optional[tuple[mx.array, ...]] = kwargs.pop("attentions", None) |
|
|
|
|
|
class PlamoPreTrainedModel(nn.Module): |
|
config_class = ModelArgs |
|
_no_split_modules: list[str] |
|
base_model_prefix = "model" |
|
supports_gradient_checkpointing = True |
|
_no_split_modules = ["PlamoDecoderLayer"] |
|
_skip_keys_device_placement = "past_key_values" |
|
_keys_to_ignore_on_load_unexpected = [r"decoder\.version"] |
|
|
|
def __init__(self, config: ModelArgs): |
|
super().__init__() |
|
self.config = config |
|
|
|
def _init_weights(self, module: nn.Module) -> None: |
|
std = 0.02 |
|
if isinstance(module, nn.Linear): |
|
module.weight = mx.random.normal(loc=0.0, scale=std, shape=module.weight.shape) |
|
if module.bias is not None: |
|
module.bias = mx.zeros_like(module.bias) |
|
elif isinstance(module, nn.Embedding): |
|
module.weight = mx.random.normal(loc=0.0, scale=std, shape=module.weight.shape) |
|
if module.padding_idx is not None: |
|
module.weight[module.padding_idx] = mx.zeros_like(module.weight[module.padding_idx]) |
|
|
|
|
|
class PlamoModel(PlamoPreTrainedModel): |
|
def __init__(self, config: ModelArgs): |
|
super().__init__(config) |
|
assert config.eval_attention_n_bit is None |
|
assert config.eval_mlp_n_bit is None |
|
|
|
self.padding_idx = config.pad_token_id |
|
self.vocab_size = config.vocab_size |
|
|
|
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size) |
|
self.layers = PlamoDecoder(config) |
|
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
|
|
self.gradient_checkpointing = False |
|
|
|
|
|
|
|
def get_input_embeddings(self) -> nn.Embedding: |
|
return self.embed_tokens |
|
|
|
def set_input_embeddings(self, value: nn.Embedding) -> None: |
|
self.embed_tokens = value |
|
|
|
|
|
def _prepare_decoder_attention_mask( |
|
self, |
|
attention_mask: mx.array, |
|
input_shape: tuple[int, int], |
|
inputs_embeds: Optional[mx.array], |
|
past_key_values_length: int, |
|
) -> Optional[mx.array]: |
|
|
|
|
|
combined_attention_mask: Optional[mx.array] = None |
|
if input_shape[-1] > 1: |
|
assert inputs_embeds is not None |
|
combined_attention_mask = _make_causal_mask( |
|
input_shape, |
|
inputs_embeds.dtype, |
|
past_key_values_length=past_key_values_length, |
|
) |
|
input_shape = (input_shape[0], combined_attention_mask.shape[2]) |
|
|
|
if attention_mask is not None: |
|
if attention_mask.ndim == 4: |
|
|
|
expanded_attn_mask = attention_mask |
|
else: |
|
|
|
assert inputs_embeds is not None |
|
expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]) |
|
combined_attention_mask = ( |
|
expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask |
|
) |
|
|
|
return combined_attention_mask |
|
|
|
def __call__( |
|
self, |
|
input_ids: Optional[mx.array] = None, |
|
attention_mask: Optional[mx.array] = None, |
|
position_ids: Optional[mx.array] = None, |
|
past_key_values: Optional[PlamoCache] = None, |
|
inputs_embeds: Optional[mx.array] = None, |
|
image_features: Optional[mx.array] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[tuple, BaseModelOutputWithPast]: |
|
assert input_ids is not None |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
|
|
if input_ids is not None and inputs_embeds is not None: |
|
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time") |
|
elif input_ids is not None: |
|
batch_size, seq_length = input_ids.shape |
|
else: |
|
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds") |
|
|
|
seq_length_with_past = seq_length |
|
past_key_values_length = 0 |
|
|
|
if past_key_values is not None: |
|
past_key_values_length = past_key_values.get_seq_length() |
|
seq_length_with_past = seq_length_with_past + past_key_values_length |
|
|
|
if inputs_embeds is None: |
|
inputs_embeds = self.embed_tokens(input_ids) |
|
|
|
if image_features is not None: |
|
assert self.config.image_token_id is not None |
|
image_embeds = self.image_proj(image_features) |
|
assert image_embeds.shape == inputs_embeds.shape, ( |
|
image_embeds.shape, |
|
inputs_embeds.shape, |
|
) |
|
mask = input_ids == self.config.image_token_id |
|
inputs_embeds[mask] = image_embeds[mask] |
|
|
|
|
|
require_attn_mask = False |
|
if not self.training or past_key_values is not None: |
|
require_attn_mask = True |
|
if seq_length_with_past >= self.config.attention_window_size: |
|
require_attn_mask = True |
|
if require_attn_mask and attention_mask is None: |
|
attention_mask = mx.ones( |
|
(batch_size, seq_length_with_past), |
|
dtype=mx.bool_, |
|
) |
|
if attention_mask is not None: |
|
attention_mask = self._prepare_decoder_attention_mask( |
|
attention_mask, |
|
(batch_size, seq_length), |
|
inputs_embeds, |
|
past_key_values_length, |
|
) |
|
|
|
hidden_states = inputs_embeds |
|
|
|
if self.gradient_checkpointing and self.training: |
|
if use_cache: |
|
use_cache = False |
|
|
|
if use_cache and past_key_values is None: |
|
past_key_values = PlamoCache(self.config) |
|
|
|
|
|
out = self.layers( |
|
DecoderInput( |
|
hidden_states, |
|
attention_mask, |
|
past_key_values, |
|
output_hidden_states, |
|
output_attentions, |
|
self.gradient_checkpointing, |
|
) |
|
) |
|
|
|
assert isinstance(out, DecoderOutput) |
|
hidden_states = out.hidden_states |
|
all_hidden_states = out.all_hidden_states |
|
all_self_attns = out.all_self_attns |
|
|
|
hidden_states = self.norm(hidden_states) |
|
|
|
|
|
if output_hidden_states: |
|
assert all_hidden_states is not None |
|
all_hidden_states += (hidden_states,) |
|
|
|
if not return_dict: |
|
return tuple( |
|
v |
|
for v in [ |
|
hidden_states, |
|
past_key_values, |
|
all_hidden_states, |
|
all_self_attns, |
|
] |
|
if v is not None |
|
) |
|
return BaseModelOutputWithPast( |
|
last_hidden_state=hidden_states, |
|
past_key_values=past_key_values, |
|
hidden_states=all_hidden_states, |
|
attentions=all_self_attns, |
|
) |
|
|
|
|
|
class Model(PlamoPreTrainedModel): |
|
_tied_weights_keys = ["lm_head.weight"] |
|
|
|
|
|
|
|
|
|
|
|
|
|
_supports_param_buffer_assignment = False |
|
|
|
def __init__(self, config: ModelArgs) -> None: |
|
super().__init__(config) |
|
self.config = config |
|
self.model = PlamoModel(config) |
|
|
|
self.vocab_size = config.vocab_size |
|
vocab_size = ((self.vocab_size + 15) // 16) * 16 |
|
|
|
if not config.tie_word_embeddings: |
|
self.lm_head: nn.Module = nn.Linear(config.hidden_size, vocab_size, bias=False) |
|
|
|
self._prefill = True |
|
|
|
|
|
|
|
|
|
def get_input_embeddings(self) -> nn.Embedding: |
|
return self.model.embed_tokens |
|
|
|
def set_input_embeddings(self, value: nn.Embedding) -> None: |
|
self.model.embed_tokens = value |
|
|
|
def get_output_embeddings(self) -> nn.Module: |
|
return self.lm_head |
|
|
|
def set_output_embeddings(self, new_embeddings: nn.Module) -> None: |
|
self.lm_head = new_embeddings |
|
|
|
def set_decoder(self, decoder: PlamoModel) -> None: |
|
self.model = decoder |
|
|
|
def get_decoder(self) -> PlamoModel: |
|
return self.model |
|
|
|
def sanitize(self, weights: dict[Any, Any]) -> dict[Any, Any]: |
|
for k, v in weights.items(): |
|
if "conv1d.weight" in k and v.shape[-1] != 1: |
|
weights[k] = v.moveaxis(2, 1) |
|
return weights |
|
|
|
def make_cache(self) -> PlamoCache: |
|
return PlamoCache(self.config) |
|
|
|
def __call__(self, inputs: mx.array, cache: PlamoCache | None = None) -> mx.array: |
|
model_inputs = self.prepare_inputs_for_generation( |
|
input_ids=inputs, |
|
past_key_values=cache, |
|
use_cache=self.config.use_cache, |
|
) |
|
if self._prefill: |
|
model_inputs["input_ids"] = inputs |
|
self._prefill = False |
|
output = self.forward(**model_inputs) |
|
if not isinstance(output, CausalLMOutputWithPast): |
|
raise ValueError( |
|
f"Unexpected output type for causal language model: {type(output)} != CausalLMOutputWithPast" |
|
) |
|
if output.logits is not None: |
|
return output.logits |
|
else: |
|
raise ValueError("The model did not return any logits.") |
|
|
|
def forward( |
|
self, |
|
input_ids: Optional[mx.array] = None, |
|
attention_mask: Optional[mx.array] = None, |
|
position_ids: Optional[mx.array] = None, |
|
past_key_values: Optional[PlamoCache] = None, |
|
inputs_embeds: Optional[mx.array] = None, |
|
image_features: Optional[mx.array] = None, |
|
labels: Optional[mx.array] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[tuple[Any, ...], CausalLMOutputWithPast]: |
|
r""" |
|
Args: |
|
labels (`mx.array` of shape `(batch_size, sequence_length)`, *optional*): |
|
Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., |
|
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored |
|
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. |
|
Returns: |
|
Example: |
|
```python |
|
>>> from transformers import AutoTokenizer, LlamaForCausalLM |
|
>>> model = LlamaForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS) |
|
>>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER) |
|
>>> prompt = "Hey, are you consciours? Can you talk to me?" |
|
>>> inputs = tokenizer(prompt, return_tensors="pt") |
|
>>> # Generate |
|
>>> generate_ids = model.generate(inputs.input_ids, max_length=30) |
|
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] |
|
"Hey, are you consciours? Can you talk to me?\nI'm not consciours, but I can talk to you." |
|
```""" |
|
assert input_ids is not None |
|
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
|
|
outputs = self.model( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_values=past_key_values, |
|
inputs_embeds=inputs_embeds, |
|
image_features=image_features, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
if isinstance(outputs, tuple): |
|
hidden_states = outputs[0] |
|
elif isinstance(outputs, BaseModelOutputWithPast): |
|
hidden_states = outputs.last_hidden_state |
|
|
|
if self.config.tie_word_embeddings: |
|
logits = self.model.embed_tokens.as_linear(hidden_states) |
|
else: |
|
logits = self.lm_head(hidden_states) |
|
|
|
logits = logits[..., : self.vocab_size] |
|
|
|
loss = None |
|
if labels is not None: |
|
|
|
shift_logits = logits[..., :-1, :] |
|
shift_labels = labels[..., 1:] |
|
|
|
loss_fct = nn.losses.cross_entropy |
|
shift_logits = shift_logits.reshape((-1, self.config.vocab_size)) |
|
shift_labels = shift_labels.reshape((-1,)) |
|
|
|
loss = loss_fct(shift_logits, shift_labels) |
|
|
|
if not return_dict: |
|
output = (logits,) + outputs[1:] |
|
return (loss,) + output if loss is not None else output |
|
|
|
if not isinstance(outputs, BaseModelOutputWithPast): |
|
raise ValueError( |
|
f"Unexpected output type for causal language model: {type(outputs)} != BaseModelOutputWithPast" |
|
) |
|
return CausalLMOutputWithPast( |
|
loss=loss, |
|
logits=logits, |
|
past_key_values=outputs.past_key_values, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|
|
def prepare_inputs_for_generation( |
|
self, |
|
input_ids: mx.array, |
|
past_key_values: Optional[PlamoCache] = None, |
|
attention_mask: Optional[mx.array] = None, |
|
inputs_embeds: Optional[mx.array] = None, |
|
image_features: Optional[mx.array] = None, |
|
**kwargs: Any, |
|
) -> dict[str, Any]: |
|
if past_key_values: |
|
input_ids = input_ids[:, -1:] |
|
if image_features is not None: |
|
image_features = image_features[:, -1:, :] |
|
|
|
position_ids = kwargs.get("position_ids", None) |
|
if attention_mask is not None and position_ids is None: |
|
|
|
position_ids = attention_mask.astype(mx.int64).cumsum(-1) - 1 |
|
position_ids.masked_fill_(attention_mask == 0, 1) |
|
if past_key_values: |
|
position_ids = position_ids[:, -1].unsqueeze(-1) |
|
|
|
|
|
if inputs_embeds is not None and past_key_values is None: |
|
model_inputs: dict[str, Any] = {"inputs_embeds": inputs_embeds} |
|
else: |
|
model_inputs = {"input_ids": input_ids} |
|
|
|
model_inputs.update( |
|
{ |
|
"position_ids": position_ids, |
|
"past_key_values": past_key_values, |
|
"use_cache": kwargs.get("use_cache"), |
|
"attention_mask": attention_mask, |
|
"image_features": image_features, |
|
} |
|
) |
|
return model_inputs |
|
|
|
@staticmethod |
|
def _reorder_cache(past_key_values: PlamoCache, beam_idx: mx.array) -> PlamoCache: |
|
past_key_values.reorder_cache(beam_idx) |
|
return past_key_values |
|
|
|
@property |
|
def layers(self): |
|
return self.model.layers |
|
|