from typing import Dict, List, Any | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
import torch | |
import os | |
MAX_INPUT_SIZE = 10_000 | |
MAX_NEW_TOKENS = 4_000 | |
def clean_json_text(text): | |
""" | |
Cleans JSON text by removing leading/trailing whitespace and escaping special characters. | |
""" | |
text = text.strip() | |
text = text.replace("\#", "#").replace("\&", "&") | |
return text | |
class EndpointHandler: | |
def __init__(self, path=""): | |
# load model and processor from path | |
self.model = AutoModelForCausalLM.from_pretrained(path, | |
trust_remote_code=True, | |
torch_dtype=torch.bfloat16, | |
device_map="auto") | |
self.model.eval() | |
self.tokenizer = AutoTokenizer.from_pretrained(path) | |
def __call__(self, data: Dict[str, Any]) -> str: | |
data = data.pop("inputs") | |
template = data.pop("template") | |
text = data.pop("text") | |
input_llm = f"<|input|>\n### Template:\n{template}\n### Text:\n{text}\n\n<|output|>" + "{" | |
input_ids = self.tokenizer(input_llm, return_tensors="pt", truncation=True, max_length=MAX_INPUT_SIZE).to("cuda") | |
output = self.tokenizer.decode(self.model.generate(**input_ids, max_new_tokens=MAX_NEW_TOKENS)[0], skip_special_tokens=True) | |
return clean_json_text(output.split("<|output|>")[1]) |