File size: 4,051 Bytes
620d681
 
 
 
 
 
45947d0
620d681
 
 
 
 
 
 
 
 
 
 
45947d0
620d681
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
---
library_name: transformers
license: llama3.1
base_model: meta-llama/Meta-Llama-3.1-8B
tags:
- llama-factory
- full
- generated_from_trainer
model-index:
- name: oh_scale_x.25_compute_equal
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# oh_scale_x.25_compute_equal

This model is a fine-tuned version of [meta-llama/Meta-Llama-3.1-8B](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B) on the mlfoundations-dev/oh-dcft-v1.3_no-curation_gpt-4o-mini_scale_0.25x dataset.
It achieves the following results on the evaluation set:
- Loss: 2.3639

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 8
- total_train_batch_size: 512
- total_eval_batch_size: 64
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: constant
- num_epochs: 46.0

### Training results

| Training Loss | Epoch   | Step | Validation Loss |
|:-------------:|:-------:|:----:|:---------------:|
| 0.8194        | 0.9986  | 88   | 0.8081          |
| 0.7435        | 1.9972  | 176  | 0.7863          |
| 0.6821        | 2.9957  | 264  | 0.7852          |
| 0.6325        | 3.9943  | 352  | 0.7986          |
| 0.5795        | 4.9929  | 440  | 0.8202          |
| 0.5193        | 5.9915  | 528  | 0.8596          |
| 0.4751        | 6.9901  | 616  | 0.9139          |
| 0.4221        | 8.0     | 705  | 1.0006          |
| 0.3649        | 8.9986  | 793  | 1.0596          |
| 0.3192        | 9.9972  | 881  | 1.1392          |
| 0.2658        | 10.9957 | 969  | 1.2517          |
| 0.2232        | 11.9943 | 1057 | 1.3438          |
| 0.1817        | 12.9929 | 1145 | 1.4416          |
| 0.1418        | 13.9915 | 1233 | 1.5400          |
| 0.1144        | 14.9901 | 1321 | 1.6749          |
| 0.0932        | 16.0    | 1410 | 1.7733          |
| 0.0669        | 16.9986 | 1498 | 1.9060          |
| 0.0506        | 17.9972 | 1586 | 1.9451          |
| 0.0412        | 18.9957 | 1674 | 2.0182          |
| 0.0336        | 19.9943 | 1762 | 2.0949          |
| 0.0299        | 20.9929 | 1850 | 2.1437          |
| 0.0255        | 21.9915 | 1938 | 2.1744          |
| 0.0214        | 22.9901 | 2026 | 2.2531          |
| 0.0183        | 24.0    | 2115 | 2.2672          |
| 0.0176        | 24.9986 | 2203 | 2.2650          |
| 0.0165        | 25.9972 | 2291 | 2.2785          |
| 0.0152        | 26.9957 | 2379 | 2.2726          |
| 0.0141        | 27.9943 | 2467 | 2.3100          |
| 0.0124        | 28.9929 | 2555 | 2.3323          |
| 0.0106        | 29.9915 | 2643 | 2.3571          |
| 0.0091        | 30.9901 | 2731 | 2.4116          |
| 0.0083        | 32.0    | 2820 | 2.5119          |
| 0.0071        | 32.9986 | 2908 | 2.4599          |
| 0.0066        | 33.9972 | 2996 | 2.4769          |
| 0.0061        | 34.9957 | 3084 | 2.4637          |
| 0.0059        | 35.9943 | 3172 | 2.4468          |
| 0.0058        | 36.9929 | 3260 | 2.4387          |
| 0.0056        | 37.9915 | 3348 | 2.4091          |
| 0.0056        | 38.9901 | 3436 | 2.4180          |
| 0.0057        | 40.0    | 3525 | 2.4193          |
| 0.0057        | 40.9986 | 3613 | 2.4677          |
| 0.0058        | 41.9972 | 3701 | 2.3642          |
| 0.0058        | 42.9957 | 3789 | 2.4231          |
| 0.0059        | 43.9943 | 3877 | 2.4137          |
| 0.0057        | 44.9929 | 3965 | 2.4166          |
| 0.0056        | 45.9348 | 4048 | 2.3639          |


### Framework versions

- Transformers 4.46.1
- Pytorch 2.3.0
- Datasets 3.1.0
- Tokenizers 0.20.3