Ngit commited on
Commit
e982f01
·
verified ·
1 Parent(s): cd2e32c

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +29 -1
README.md CHANGED
@@ -27,7 +27,34 @@ model-index:
27
  This a ONNX quantized model and is fined-tuned version of [nreimers/MiniLMv2-L6-H384-distilled-from-RoBERTa-Large](https://huggingface.co/nreimers/MiniLMv2-L6-H384-distilled-from-RoBERTa-Large) on the on the [go_emotions](https://huggingface.co/datasets/go_emotions) dataset using [tasinho/text-classification-goemotions](https://huggingface.co/tasinhoque/text-classification-goemotions) as teacher model.
28
  The original model can be found [here](https://huggingface.co/minuva/MiniLMv2-goemotions-v2)
29
 
30
- # Usage
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31
 
32
  ## Installation
33
  ```bash
@@ -114,6 +141,7 @@ for result in results:
114
  res.append(max_score)
115
 
116
  res
 
117
  # [('anger', 0.9745745062828064), ('love', 0.9884329438209534)]
118
  ```
119
  # Training hyperparameters
 
27
  This a ONNX quantized model and is fined-tuned version of [nreimers/MiniLMv2-L6-H384-distilled-from-RoBERTa-Large](https://huggingface.co/nreimers/MiniLMv2-L6-H384-distilled-from-RoBERTa-Large) on the on the [go_emotions](https://huggingface.co/datasets/go_emotions) dataset using [tasinho/text-classification-goemotions](https://huggingface.co/tasinhoque/text-classification-goemotions) as teacher model.
28
  The original model can be found [here](https://huggingface.co/minuva/MiniLMv2-goemotions-v2)
29
 
30
+ # Optimum
31
+
32
+ ## Installation
33
+
34
+ Install from source:
35
+ ```bash
36
+ python -m pip install optimum[onnxruntime]@git+https://github.com/huggingface/optimum.git
37
+ ```
38
+
39
+
40
+ ## Run the Model
41
+ ```py
42
+ from optimum.onnxruntime import ORTModelForSequenceClassification
43
+ from transformers import AutoTokenizer, pipeline
44
+
45
+ model = ORTModelForSequenceClassification.from_pretrained('minuva/MiniLMv2-goemotions-v2-onnx', provider="CPUExecutionProvider")
46
+ tokenizer = AutoTokenizer.from_pretrained('minuva/MiniLMv2-goemotions-v2-onnx', use_fast=True, model_max_length=256, truncation=True, padding='max_length')
47
+
48
+ pipe = pipeline(task='text-classification', model=model, tokenizer=tokenizer, )
49
+ texts = ["that's wrong", "can you please answer me?"]
50
+ pipe(texts)
51
+ # [{'label': 'anger', 'score': 0.9727636575698853},
52
+ # {'label': 'love', 'score': 0.9874765276908875}]
53
+ ```
54
+ # ONNX Runtime only
55
+
56
+ A lighter solution for deployment
57
+
58
 
59
  ## Installation
60
  ```bash
 
141
  res.append(max_score)
142
 
143
  res
144
+
145
  # [('anger', 0.9745745062828064), ('love', 0.9884329438209534)]
146
  ```
147
  # Training hyperparameters