--- library_name: transformers tags: - generated_from_trainer model-index: - name: bert-reg-biencoder-cosine_embedding results: [] --- # bert-reg-biencoder-cosine_embedding This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4608 - Mse: 0.2163 - Mae: 0.3729 - Pearson Corr: 0.1820 - Spearman Corr: 0.1619 - Cosine Sim: 0.6941 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 7 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mse | Mae | Pearson Corr | Spearman Corr | Cosine Sim | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------------:|:-------------:|:----------:| | 0.5366 | 1.0 | 21 | 0.5212 | 0.1367 | 0.2918 | 0.1078 | 0.1049 | 0.9047 | | 0.5294 | 2.0 | 42 | 0.5061 | 0.0996 | 0.2390 | 0.1385 | 0.1515 | 0.9048 | | 0.4811 | 3.0 | 63 | 0.4862 | 0.0855 | 0.2381 | 0.1325 | 0.0899 | 0.8857 | | 0.4292 | 4.0 | 84 | 0.4494 | 0.1511 | 0.3202 | 0.2155 | 0.1778 | 0.7872 | | 0.3672 | 5.0 | 105 | 0.4513 | 0.1470 | 0.3067 | 0.2206 | 0.1849 | 0.7980 | | 0.3259 | 6.0 | 126 | 0.4644 | 0.2209 | 0.3901 | 0.1864 | 0.1662 | 0.6696 | | 0.2866 | 7.0 | 147 | 0.4608 | 0.2163 | 0.3729 | 0.1820 | 0.1619 | 0.6941 | ### Framework versions - Transformers 4.45.1 - Pytorch 2.4.0 - Datasets 3.0.1 - Tokenizers 0.20.0