File size: 13,921 Bytes
8e47fbc
 
 
 
 
 
 
 
 
 
 
 
1bd1bdd
 
 
 
 
008115d
1bd1bdd
 
 
 
8e47fbc
 
 
 
 
 
 
 
 
 
 
 
 
1bd1bdd
8e47fbc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1bd1bdd
 
 
 
8e47fbc
 
 
 
 
 
1bd1bdd
8e47fbc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1bd1bdd
8e47fbc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1bd1bdd
8e47fbc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1bd1bdd
 
 
 
 
 
 
 
 
8e47fbc
 
1bd1bdd
 
8e47fbc
 
 
1bd1bdd
 
8e47fbc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1bd1bdd
 
8e47fbc
1bd1bdd
8e47fbc
 
 
 
 
 
 
 
 
 
 
 
1bd1bdd
 
 
8e47fbc
 
 
 
 
1bd1bdd
 
8e47fbc
 
 
 
 
 
 
008115d
 
8e47fbc
 
 
 
008115d
8e47fbc
008115d
8e47fbc
 
 
1bd1bdd
8e47fbc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
---
base_model: mini1013/master_domain
library_name: setfit
metrics:
- accuracy
pipeline_tag: text-classification
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: 헤어샵 전용 바이오메드 엘피피 트리트먼트 LPP 실크 트리트먼트1000ml 사은품 증정  (#M)쿠팡 홈>뷰티>헤어>트리트먼트/팩>일반
    트리트먼트 Coupang > 뷰티 > 헤어 > 트리트먼트/팩 > 일반 트리트먼트
- text: 미쟝센 퍼펙트 세럼 트리트먼트 330ml × 1 (#M)쿠팡 홈>뷰티>헤어>트리트먼트/팩/앰플>일반 트리트먼트 Coupang > 뷰티
    > 헤어 > 트리트먼트/팩/앰플 > 일반 트리트먼트
- text: 한소희Pick 로레알파리 토탈리페어5 트리트먼트 헤어팩 400ml 50ml 헤어팩280ml LotteOn > 뷰티 > 헤어/바디 >
    헤어케어 > 트리트먼트/헤어팩 LotteOn > 뷰티 > 헤어/바디 > 헤어케어 > 트리트먼트/헤어팩
- text: 밀크바오밥 오리지널 샴푸 화이트솝 1L(옵션선택1) 11 트리트먼트 화이트솝 1000ml (#M)헤어케어>샴푸>샴푸바 AD > traverse
    > 11st > 뷰티 > 헤어케어 > 샴푸 > 샴푸바
- text: 로레알 토탈리페어5 헤어팩 280ml + 170ml  (#M)쿠팡 홈>생활용품>헤어/바디/세안>트리트먼트/팩/앰플>헤어팩/헤어마스크
    Coupang > 뷰티 > 헤어 > 트리트먼트/팩/앰플 > 헤어팩/헤어마스크
inference: true
model-index:
- name: SetFit with mini1013/master_domain
  results:
  - task:
      type: text-classification
      name: Text Classification
    dataset:
      name: Unknown
      type: unknown
      split: test
    metrics:
    - type: accuracy
      value: 0.8786919831223629
      name: Accuracy
---

# SetFit with mini1013/master_domain

This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.

## Model Details

### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 512 tokens
- **Number of Classes:** 2 classes
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)

### Model Labels
| Label | Examples                                                                                                                                                                                                                                                                                                                                                                                                             |
|:------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1     | <ul><li>'[웰라] 염색모전용 SP 컬러 세이브 마스크 400ml  (#M)화장품/미용>헤어케어>헤어팩 LO > window_fashion_town > Naverstore > FashionTown > 뷰티 > CATEGORY > 헤어케어 > 트리트먼트/팩 > 헤어팩'</li><li>'아모스 01 퓨어스마트 샴푸 팩 비듬케어 사춘기샴푸 퓨어 스마트 팩 300ml-비듬두피팩 (#M)홈>화장품/미용>헤어케어>샴푸 Naverstore > 화장품/미용 > 헤어케어 > 샴푸'</li><li>'미쟝센 데미지 케어 로즈프로틴 헤어팩 150ml × 1개 (#M)쿠팡 홈>생활용품>헤어/바디/세안>트리트먼트/팩/앰플>헤어팩/헤어마스크 Coupang > 뷰티 > 헤어 > 트리트먼트/팩/앰플 > 헤어팩/헤어마스크'</li></ul> |
| 0     | <ul><li>'스무드 인퓨전 너리싱 스타일링 크림 250ml  LotteOn > 뷰티 > 명품화장품 > 헤어케어 LotteOn > 뷰티 > 헤어케어 > 헤어에센스'</li><li>'체리블라썸/아르간오일 트리트먼트 280ml x2개 02)모로코아르간 트리트먼트 2개 LotteOn > 뷰티 > 헤어케어 > 트리트먼트 LotteOn > 뷰티 > 헤어케어 > 트리트먼트'</li><li>'[LG생활건강] 비욘드 프로페셔널 디펜스 트리트먼트 500ml  LotteOn > 뷰티 > 헤어/바디 > 헤어케어 > 린스 LotteOn > 뷰티 > 헤어/바디 > 헤어케어 > 린스'</li></ul>                                                                              |

## Evaluation

### Metrics
| Label   | Accuracy |
|:--------|:---------|
| **all** | 0.8787   |

## Uses

### Direct Use for Inference

First install the SetFit library:

```bash
pip install setfit
```

Then you can load this model and run inference.

```python
from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("mini1013/master_cate_top_bt13_9_test_flat")
# Run inference
preds = model("미쟝센 퍼펙트 세럼 트리트먼트 330ml × 1개 (#M)쿠팡 홈>뷰티>헤어>트리트먼트/팩/앰플>일반 트리트먼트 Coupang > 뷰티 > 헤어 > 트리트먼트/팩/앰플 > 일반 트리트먼트")
```

<!--
### Downstream Use

*List how someone could finetune this model on their own dataset.*
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Set Metrics
| Training set | Min | Median | Max |
|:-------------|:----|:-------|:----|
| Word count   | 11  | 21.07  | 49  |

| Label | Training Sample Count |
|:------|:----------------------|
| 0     | 50                    |
| 1     | 50                    |

### Training Hyperparameters
- batch_size: (64, 64)
- num_epochs: (30, 30)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 100
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- l2_weight: 0.01
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False

### Training Results
| Epoch   | Step | Training Loss | Validation Loss |
|:-------:|:----:|:-------------:|:---------------:|
| 0.0064  | 1    | 0.4262        | -               |
| 0.3185  | 50   | 0.4176        | -               |
| 0.6369  | 100  | 0.314         | -               |
| 0.9554  | 150  | 0.0953        | -               |
| 1.2739  | 200  | 0.0302        | -               |
| 1.5924  | 250  | 0.0123        | -               |
| 1.9108  | 300  | 0.0005        | -               |
| 2.2293  | 350  | 0.0002        | -               |
| 2.5478  | 400  | 0.0001        | -               |
| 2.8662  | 450  | 0.0001        | -               |
| 3.1847  | 500  | 0.0001        | -               |
| 3.5032  | 550  | 0.0           | -               |
| 3.8217  | 600  | 0.0001        | -               |
| 4.1401  | 650  | 0.0           | -               |
| 4.4586  | 700  | 0.0           | -               |
| 4.7771  | 750  | 0.0           | -               |
| 5.0955  | 800  | 0.0001        | -               |
| 5.4140  | 850  | 0.0001        | -               |
| 5.7325  | 900  | 0.0           | -               |
| 6.0510  | 950  | 0.0           | -               |
| 6.3694  | 1000 | 0.0           | -               |
| 6.6879  | 1050 | 0.0           | -               |
| 7.0064  | 1100 | 0.0           | -               |
| 7.3248  | 1150 | 0.0           | -               |
| 7.6433  | 1200 | 0.0           | -               |
| 7.9618  | 1250 | 0.0           | -               |
| 8.2803  | 1300 | 0.0           | -               |
| 8.5987  | 1350 | 0.0           | -               |
| 8.9172  | 1400 | 0.0           | -               |
| 9.2357  | 1450 | 0.0           | -               |
| 9.5541  | 1500 | 0.0           | -               |
| 9.8726  | 1550 | 0.0           | -               |
| 10.1911 | 1600 | 0.0           | -               |
| 10.5096 | 1650 | 0.0           | -               |
| 10.8280 | 1700 | 0.0           | -               |
| 11.1465 | 1750 | 0.0           | -               |
| 11.4650 | 1800 | 0.0           | -               |
| 11.7834 | 1850 | 0.0           | -               |
| 12.1019 | 1900 | 0.0           | -               |
| 12.4204 | 1950 | 0.0           | -               |
| 12.7389 | 2000 | 0.0           | -               |
| 13.0573 | 2050 | 0.0           | -               |
| 13.3758 | 2100 | 0.0           | -               |
| 13.6943 | 2150 | 0.0           | -               |
| 14.0127 | 2200 | 0.0           | -               |
| 14.3312 | 2250 | 0.0           | -               |
| 14.6497 | 2300 | 0.0           | -               |
| 14.9682 | 2350 | 0.0           | -               |
| 15.2866 | 2400 | 0.0           | -               |
| 15.6051 | 2450 | 0.0           | -               |
| 15.9236 | 2500 | 0.0           | -               |
| 16.2420 | 2550 | 0.0           | -               |
| 16.5605 | 2600 | 0.0           | -               |
| 16.8790 | 2650 | 0.0           | -               |
| 17.1975 | 2700 | 0.0001        | -               |
| 17.5159 | 2750 | 0.0001        | -               |
| 17.8344 | 2800 | 0.0003        | -               |
| 18.1529 | 2850 | 0.0           | -               |
| 18.4713 | 2900 | 0.0           | -               |
| 18.7898 | 2950 | 0.0           | -               |
| 19.1083 | 3000 | 0.0           | -               |
| 19.4268 | 3050 | 0.0           | -               |
| 19.7452 | 3100 | 0.0001        | -               |
| 20.0637 | 3150 | 0.0002        | -               |
| 20.3822 | 3200 | 0.0           | -               |
| 20.7006 | 3250 | 0.0           | -               |
| 21.0191 | 3300 | 0.0           | -               |
| 21.3376 | 3350 | 0.0           | -               |
| 21.6561 | 3400 | 0.0           | -               |
| 21.9745 | 3450 | 0.0           | -               |
| 22.2930 | 3500 | 0.0           | -               |
| 22.6115 | 3550 | 0.0           | -               |
| 22.9299 | 3600 | 0.0           | -               |
| 23.2484 | 3650 | 0.0           | -               |
| 23.5669 | 3700 | 0.0           | -               |
| 23.8854 | 3750 | 0.0           | -               |
| 24.2038 | 3800 | 0.0           | -               |
| 24.5223 | 3850 | 0.0           | -               |
| 24.8408 | 3900 | 0.0           | -               |
| 25.1592 | 3950 | 0.0           | -               |
| 25.4777 | 4000 | 0.0           | -               |
| 25.7962 | 4050 | 0.0           | -               |
| 26.1146 | 4100 | 0.0           | -               |
| 26.4331 | 4150 | 0.0           | -               |
| 26.7516 | 4200 | 0.0           | -               |
| 27.0701 | 4250 | 0.0           | -               |
| 27.3885 | 4300 | 0.0           | -               |
| 27.7070 | 4350 | 0.0           | -               |
| 28.0255 | 4400 | 0.0           | -               |
| 28.3439 | 4450 | 0.0           | -               |
| 28.6624 | 4500 | 0.0           | -               |
| 28.9809 | 4550 | 0.0           | -               |
| 29.2994 | 4600 | 0.0           | -               |
| 29.6178 | 4650 | 0.0           | -               |
| 29.9363 | 4700 | 0.0           | -               |

### Framework Versions
- Python: 3.10.12
- SetFit: 1.1.0
- Sentence Transformers: 3.3.1
- Transformers: 4.44.2
- PyTorch: 2.2.0a0+81ea7a4
- Datasets: 3.2.0
- Tokenizers: 0.19.1

## Citation

### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->