mini1013 commited on
Commit
c9e209f
·
verified ·
1 Parent(s): 93aa598

Push model using huggingface_hub.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,235 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: mini1013/master_domain
3
+ library_name: setfit
4
+ metrics:
5
+ - metric
6
+ pipeline_tag: text-classification
7
+ tags:
8
+ - setfit
9
+ - sentence-transformers
10
+ - text-classification
11
+ - generated_from_setfit_trainer
12
+ widget:
13
+ - text: '[CJ](신세계 의정부점) 비비고 누룽지닭다리삼계탕 550g 주식회사 에스에스지닷컴'
14
+ - text: 고객 후기로 만들어진 밀푀유 쇼유 나베 밀키트 (2인) 2월27일(화) 주식회사 아내의쉐프
15
+ - text: 룸서비스 홈파티음식 케이터링 생일팩15종 서울출장뷔페 집들이 배달 돌잔치상 손님초대요리 3.룸서비스파티팩15종(고급박스용기)_6월_19일
16
+ 주식회사 룸서비스딜리버리
17
+ - text: 홈파티음식 케이터링 생일팩15종 인천출장뷔페 집들이 배달 돌잔치상 소규모 손님초대요리 01.룸서비스 생일팩 15종_1월_20일 (주)셀루체
18
+ - text: 홈파티음식 케이터링 생일팩15종 인천출장뷔페 집들이 배달 돌잔치상 소규모 손님초대요리 3.룸서비스파티팩15종(고급박스용기)_4월_19일
19
+ (주)셀루체
20
+ inference: true
21
+ model-index:
22
+ - name: SetFit with mini1013/master_domain
23
+ results:
24
+ - task:
25
+ type: text-classification
26
+ name: Text Classification
27
+ dataset:
28
+ name: Unknown
29
+ type: unknown
30
+ split: test
31
+ metrics:
32
+ - type: metric
33
+ value: 0.9173203883495146
34
+ name: Metric
35
+ ---
36
+
37
+ # SetFit with mini1013/master_domain
38
+
39
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
40
+
41
+ The model has been trained using an efficient few-shot learning technique that involves:
42
+
43
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
44
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
45
+
46
+ ## Model Details
47
+
48
+ ### Model Description
49
+ - **Model Type:** SetFit
50
+ - **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain)
51
+ - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
52
+ - **Maximum Sequence Length:** 512 tokens
53
+ - **Number of Classes:** 8 classes
54
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
55
+ <!-- - **Language:** Unknown -->
56
+ <!-- - **License:** Unknown -->
57
+
58
+ ### Model Sources
59
+
60
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
61
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
62
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
63
+
64
+ ### Model Labels
65
+ | Label | Examples |
66
+ |:------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
67
+ | 6.0 | <ul><li>'듬뿍담은 안동식 순살 찜닭 밀키트 711g 주식회사 프레시지'</li><li>'우렁쌈장 (2인분) 밀키트 쿠킹박스 우렁살 2개 추가(100g) 농업회사법인 주식회사 아임셰프'</li><li>'홍수계 매콤 당면듬뿍 순살 찜닭 850g 2인분 냉동 밀키트 셀린'</li></ul> |
68
+ | 1.0 | <ul><li>'[마이셰프] 찹스테이크(1인)(프리미엄박스) 주식회사 마이셰프'</li><li>'소문난 청정원 호밍스 마포식 돼지양념구이 210g 정원이샵 홈파티음식 캠핑요리 맥주안주 야식 간편식 홈캉스 풍미업 모에모에큥 에스더블유디자인'</li><li>'심쿡 슈페리어 연어 스테이크 455g 밀키트 쿠킹박스 인영이네'</li></ul> |
69
+ | 5.0 | <ul><li>'[골든벨통상](신세계센텀점)골든벨 심영순쇠고기국간장250ml 주식회사 에스에스지닷컴'</li><li>'[CJ](신세계센텀점) 튀김가루 1kg 1개 주식회사 에스에스지닷컴'</li><li>'(치즈박스)쉐프가 만든 캠핑 와인안주세트(고기 포함 안됨 X) 캘리포니아 키친 실속형(-2500)_11/20 월요일 캘리포니아키친(california kitchen)'</li></ul> |
70
+ | 4.0 | <ul><li>'소고기 버섯 잡채 (2인분) 주식회사 프레시지'</li><li>'야식메뉴 청정원 호밍스 춘천식 치즈닭갈비 220g 저녁반찬 자취요리 규비에스코퍼레이션'</li><li>'하림 궁중 국물 닭떡볶이 700g 밀키트 바이라이프'</li></ul> |
71
+ | 0.0 | <ul><li>'올바르고반듯한 떡볶이 원조시장 떡볶이 (냉동), 575g, 1개 하누코지'</li><li>'두끼 즉석떡볶이 560G 아이스박스 포장/선택 인터드림'</li><li>'두끼 매콤 고소 로제떡볶이 3팩 450g 주식회사 다른'</li></ul> |
72
+ | 3.0 | <ul><li>'[강원팜] 홈스랑 곤드레감자밥 쉽게만들기6인분 강원팜'</li><li>'마이셰프 즉석밥 일상정원 명란 솥밥 (냉동), 233g, 1개 하누코지'</li><li>'여름철 보양식 전복죽 200g 1팩 더블제이doubleJ'</li></ul> |
73
+ | 7.0 | <ul><li>'우정옥 여주 한우 특곰탕 1kg(2인분) 한우사골곰탕 도가니탕 1000g(약 2인분) 주식회사 우정옥'</li><li>'25년 전통 수복 얼큰 감자탕 [기본팩] 캠핑요리 밀키트 우거지 리얼감자탕 알뜰팩(라면사리X / 야채X) 수복얼큰감자탕'</li><li>'인천 정통 맛집 장금수 스페셜 부대전골 부대찌개 2-3인분 술안주 캠핑 집들이 밀키트 더렌'</li></ul> |
74
+ | 2.0 | <ul><li>'1분완성 개별포장 매콤 알싸 비빔 막국수 막국수 1팩 (주)데이지웰푸드'</li><li>'동원 면발의신 얼큰칼국수 268g 엄마손맛 육수 쉬운요리 감칠맛 자취 풍미 레시피 소스 인영'</li><li>'샐러드미인 쉐프엠 미트파스타 230g 주식회사 엠디에스코리아'</li></ul> |
75
+
76
+ ## Evaluation
77
+
78
+ ### Metrics
79
+ | Label | Metric |
80
+ |:--------|:-------|
81
+ | **all** | 0.9173 |
82
+
83
+ ## Uses
84
+
85
+ ### Direct Use for Inference
86
+
87
+ First install the SetFit library:
88
+
89
+ ```bash
90
+ pip install setfit
91
+ ```
92
+
93
+ Then you can load this model and run inference.
94
+
95
+ ```python
96
+ from setfit import SetFitModel
97
+
98
+ # Download from the 🤗 Hub
99
+ model = SetFitModel.from_pretrained("mini1013/master_cate_fd8")
100
+ # Run inference
101
+ preds = model("[CJ](신세계 의정부점) 비비고 누룽지닭다리삼계탕 550g 주식회사 에스에스지닷컴")
102
+ ```
103
+
104
+ <!--
105
+ ### Downstream Use
106
+
107
+ *List how someone could finetune this model on their own dataset.*
108
+ -->
109
+
110
+ <!--
111
+ ### Out-of-Scope Use
112
+
113
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
114
+ -->
115
+
116
+ <!--
117
+ ## Bias, Risks and Limitations
118
+
119
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
120
+ -->
121
+
122
+ <!--
123
+ ### Recommendations
124
+
125
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
126
+ -->
127
+
128
+ ## Training Details
129
+
130
+ ### Training Set Metrics
131
+ | Training set | Min | Median | Max |
132
+ |:-------------|:----|:-------|:----|
133
+ | Word count | 3 | 9.3575 | 20 |
134
+
135
+ | Label | Training Sample Count |
136
+ |:------|:----------------------|
137
+ | 0.0 | 50 |
138
+ | 1.0 | 50 |
139
+ | 2.0 | 50 |
140
+ | 3.0 | 50 |
141
+ | 4.0 | 50 |
142
+ | 5.0 | 50 |
143
+ | 6.0 | 50 |
144
+ | 7.0 | 50 |
145
+
146
+ ### Training Hyperparameters
147
+ - batch_size: (512, 512)
148
+ - num_epochs: (20, 20)
149
+ - max_steps: -1
150
+ - sampling_strategy: oversampling
151
+ - num_iterations: 40
152
+ - body_learning_rate: (2e-05, 2e-05)
153
+ - head_learning_rate: 2e-05
154
+ - loss: CosineSimilarityLoss
155
+ - distance_metric: cosine_distance
156
+ - margin: 0.25
157
+ - end_to_end: False
158
+ - use_amp: False
159
+ - warmup_proportion: 0.1
160
+ - seed: 42
161
+ - eval_max_steps: -1
162
+ - load_best_model_at_end: False
163
+
164
+ ### Training Results
165
+ | Epoch | Step | Training Loss | Validation Loss |
166
+ |:-------:|:----:|:-------------:|:---------------:|
167
+ | 0.0159 | 1 | 0.4347 | - |
168
+ | 0.7937 | 50 | 0.2865 | - |
169
+ | 1.5873 | 100 | 0.0903 | - |
170
+ | 2.3810 | 150 | 0.0636 | - |
171
+ | 3.1746 | 200 | 0.0401 | - |
172
+ | 3.9683 | 250 | 0.003 | - |
173
+ | 4.7619 | 300 | 0.0016 | - |
174
+ | 5.5556 | 350 | 0.0017 | - |
175
+ | 6.3492 | 400 | 0.0025 | - |
176
+ | 7.1429 | 450 | 0.0007 | - |
177
+ | 7.9365 | 500 | 0.0001 | - |
178
+ | 8.7302 | 550 | 0.0001 | - |
179
+ | 9.5238 | 600 | 0.0002 | - |
180
+ | 10.3175 | 650 | 0.0001 | - |
181
+ | 11.1111 | 700 | 0.0008 | - |
182
+ | 11.9048 | 750 | 0.0001 | - |
183
+ | 12.6984 | 800 | 0.0001 | - |
184
+ | 13.4921 | 850 | 0.0 | - |
185
+ | 14.2857 | 900 | 0.0001 | - |
186
+ | 15.0794 | 950 | 0.0 | - |
187
+ | 15.8730 | 1000 | 0.0 | - |
188
+ | 16.6667 | 1050 | 0.0 | - |
189
+ | 17.4603 | 1100 | 0.0 | - |
190
+ | 18.2540 | 1150 | 0.0 | - |
191
+ | 19.0476 | 1200 | 0.0 | - |
192
+ | 19.8413 | 1250 | 0.0 | - |
193
+
194
+ ### Framework Versions
195
+ - Python: 3.10.12
196
+ - SetFit: 1.1.0.dev0
197
+ - Sentence Transformers: 3.1.1
198
+ - Transformers: 4.46.1
199
+ - PyTorch: 2.4.0+cu121
200
+ - Datasets: 2.20.0
201
+ - Tokenizers: 0.20.0
202
+
203
+ ## Citation
204
+
205
+ ### BibTeX
206
+ ```bibtex
207
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
208
+ doi = {10.48550/ARXIV.2209.11055},
209
+ url = {https://arxiv.org/abs/2209.11055},
210
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
211
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
212
+ title = {Efficient Few-Shot Learning Without Prompts},
213
+ publisher = {arXiv},
214
+ year = {2022},
215
+ copyright = {Creative Commons Attribution 4.0 International}
216
+ }
217
+ ```
218
+
219
+ <!--
220
+ ## Glossary
221
+
222
+ *Clearly define terms in order to be accessible across audiences.*
223
+ -->
224
+
225
+ <!--
226
+ ## Model Card Authors
227
+
228
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
229
+ -->
230
+
231
+ <!--
232
+ ## Model Card Contact
233
+
234
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
235
+ -->
config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "mini1013/master_item_fd",
3
+ "architectures": [
4
+ "RobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "gradient_checkpointing": false,
11
+ "hidden_act": "gelu",
12
+ "hidden_dropout_prob": 0.1,
13
+ "hidden_size": 768,
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 3072,
16
+ "layer_norm_eps": 1e-05,
17
+ "max_position_embeddings": 514,
18
+ "model_type": "roberta",
19
+ "num_attention_heads": 12,
20
+ "num_hidden_layers": 12,
21
+ "pad_token_id": 1,
22
+ "position_embedding_type": "absolute",
23
+ "tokenizer_class": "BertTokenizer",
24
+ "torch_dtype": "float32",
25
+ "transformers_version": "4.46.1",
26
+ "type_vocab_size": 1,
27
+ "use_cache": true,
28
+ "vocab_size": 32000
29
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.1.1",
4
+ "transformers": "4.46.1",
5
+ "pytorch": "2.4.0+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
config_setfit.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "labels": null,
3
+ "normalize_embeddings": false
4
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:044af20260966926b9039ee9031981ceeb72ac5dd301ecabf9db119d5d825da9
3
+ size 442494816
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8e7501db902c164d425ca8f45f705beca879e362e14ac056b9cbb020225f0a84
3
+ size 50087
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "[CLS]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "[SEP]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "[MASK]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "[PAD]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "[SEP]",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[CLS]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "[PAD]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "[SEP]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "[UNK]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "4": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "[CLS]",
45
+ "clean_up_tokenization_spaces": false,
46
+ "cls_token": "[CLS]",
47
+ "do_basic_tokenize": true,
48
+ "do_lower_case": false,
49
+ "eos_token": "[SEP]",
50
+ "mask_token": "[MASK]",
51
+ "max_length": 512,
52
+ "model_max_length": 512,
53
+ "never_split": null,
54
+ "pad_to_multiple_of": null,
55
+ "pad_token": "[PAD]",
56
+ "pad_token_type_id": 0,
57
+ "padding_side": "right",
58
+ "sep_token": "[SEP]",
59
+ "stride": 0,
60
+ "strip_accents": null,
61
+ "tokenize_chinese_chars": true,
62
+ "tokenizer_class": "BertTokenizer",
63
+ "truncation_side": "right",
64
+ "truncation_strategy": "longest_first",
65
+ "unk_token": "[UNK]"
66
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff