--- base_model: mini1013/master_domain library_name: setfit metrics: - metric pipeline_tag: text-classification tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer widget: - text: 거래처선물 어른 직장상사추석선물 특별한 명절 설 아카시아꿀600g_백자_공단 청 보자기 와재트코퍼 - text: '[아리울떡공방] 굳지않는 아리울떡 베스트 1kg+1kg 골라잡기 06. 굳지않는 모듬 깨송편 1kg_09. 굳지않는 쑥개떡 1kg 주식회사 아리울마켓' - text: 빵또아 /붕어싸만코 6종 10+10+10개 골라담기 빵또아 /붕어싸만코 6종 10+10+10개 골_붕어싸만코 초코 10개_빵또아 초코쿠앤크 10개+빵또아 초코쿠앤크 1 길미로지스 - text: 매그넘 아이스크림팩 클래식 3팩 더블 라즈베리팩 (88ml x3)_미니 팩 (55ml x6)_민트팩 (100ml x4) 유니레버코리아 (주) - text: 크라운 C콘칲 70g/콘칩/스낵 농심_농심 감튀 레드칠리맛 60g 텍사스유통 inference: true model-index: - name: SetFit with mini1013/master_domain results: - task: type: text-classification name: Text Classification dataset: name: Unknown type: unknown split: test metrics: - type: metric value: 0.7591020738115225 name: Metric --- # SetFit with mini1013/master_domain This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 512 tokens - **Number of Classes:** 16 classes ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 1.0 | | | 15.0 | | | 11.0 | | | 8.0 | | | 3.0 | | | 5.0 | | | 7.0 | | | 13.0 | | | 4.0 | | | 12.0 | | | 9.0 | | | 14.0 | | | 0.0 | | | 6.0 | | | 10.0 | | | 2.0 | | ## Evaluation ### Metrics | Label | Metric | |:--------|:-------| | **all** | 0.7591 | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the 🤗 Hub model = SetFitModel.from_pretrained("mini1013/master_cate_fd2") # Run inference preds = model("크라운 C콘칲 70g/콘칩/스낵 농심_농심 감튀 레드칠리맛 60g 텍사스유통") ``` ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:-------|:----| | Word count | 3 | 9.9413 | 29 | | Label | Training Sample Count | |:------|:----------------------| | 0.0 | 50 | | 1.0 | 50 | | 2.0 | 50 | | 3.0 | 50 | | 4.0 | 50 | | 5.0 | 50 | | 6.0 | 50 | | 7.0 | 50 | | 8.0 | 50 | | 9.0 | 50 | | 10.0 | 50 | | 11.0 | 50 | | 12.0 | 50 | | 13.0 | 50 | | 14.0 | 50 | | 15.0 | 50 | ### Training Hyperparameters - batch_size: (512, 512) - num_epochs: (20, 20) - max_steps: -1 - sampling_strategy: oversampling - num_iterations: 40 - body_learning_rate: (2e-05, 2e-05) - head_learning_rate: 2e-05 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: False ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:-----:|:----:|:-------------:|:---------------:| | 0.008 | 1 | 0.3892 | - | | 0.4 | 50 | 0.3143 | - | | 0.8 | 100 | 0.2068 | - | | 1.2 | 150 | 0.0911 | - | | 1.6 | 200 | 0.0471 | - | | 2.0 | 250 | 0.0355 | - | | 2.4 | 300 | 0.0285 | - | | 2.8 | 350 | 0.0154 | - | | 3.2 | 400 | 0.0138 | - | | 3.6 | 450 | 0.0057 | - | | 4.0 | 500 | 0.0105 | - | | 4.4 | 550 | 0.0134 | - | | 4.8 | 600 | 0.0075 | - | | 5.2 | 650 | 0.0026 | - | | 5.6 | 700 | 0.001 | - | | 6.0 | 750 | 0.0003 | - | | 6.4 | 800 | 0.0003 | - | | 6.8 | 850 | 0.0003 | - | | 7.2 | 900 | 0.0002 | - | | 7.6 | 950 | 0.0002 | - | | 8.0 | 1000 | 0.0003 | - | | 8.4 | 1050 | 0.0001 | - | | 8.8 | 1100 | 0.0001 | - | | 9.2 | 1150 | 0.0001 | - | | 9.6 | 1200 | 0.0001 | - | | 10.0 | 1250 | 0.0002 | - | | 10.4 | 1300 | 0.0001 | - | | 10.8 | 1350 | 0.0001 | - | | 11.2 | 1400 | 0.0001 | - | | 11.6 | 1450 | 0.0001 | - | | 12.0 | 1500 | 0.0001 | - | | 12.4 | 1550 | 0.0001 | - | | 12.8 | 1600 | 0.0001 | - | | 13.2 | 1650 | 0.0001 | - | | 13.6 | 1700 | 0.0001 | - | | 14.0 | 1750 | 0.0005 | - | | 14.4 | 1800 | 0.0001 | - | | 14.8 | 1850 | 0.0001 | - | | 15.2 | 1900 | 0.0001 | - | | 15.6 | 1950 | 0.0001 | - | | 16.0 | 2000 | 0.0001 | - | | 16.4 | 2050 | 0.0001 | - | | 16.8 | 2100 | 0.0001 | - | | 17.2 | 2150 | 0.0001 | - | | 17.6 | 2200 | 0.0001 | - | | 18.0 | 2250 | 0.0001 | - | | 18.4 | 2300 | 0.0001 | - | | 18.8 | 2350 | 0.0001 | - | | 19.2 | 2400 | 0.0001 | - | | 19.6 | 2450 | 0.0001 | - | | 20.0 | 2500 | 0.0 | - | ### Framework Versions - Python: 3.10.12 - SetFit: 1.1.0.dev0 - Sentence Transformers: 3.1.1 - Transformers: 4.46.1 - PyTorch: 2.4.0+cu121 - Datasets: 2.20.0 - Tokenizers: 0.20.0 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```