Push model using huggingface_hub.
Browse files- 1_Pooling/config.json +10 -0
- README.md +235 -0
- config.json +29 -0
- config_sentence_transformers.json +10 -0
- config_setfit.json +4 -0
- model.safetensors +3 -0
- model_head.pkl +3 -0
- modules.json +14 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +51 -0
- tokenizer.json +0 -0
- tokenizer_config.json +66 -0
- vocab.txt +0 -0
    	
        1_Pooling/config.json
    ADDED
    
    | @@ -0,0 +1,10 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
              "word_embedding_dimension": 768,
         | 
| 3 | 
            +
              "pooling_mode_cls_token": false,
         | 
| 4 | 
            +
              "pooling_mode_mean_tokens": true,
         | 
| 5 | 
            +
              "pooling_mode_max_tokens": false,
         | 
| 6 | 
            +
              "pooling_mode_mean_sqrt_len_tokens": false,
         | 
| 7 | 
            +
              "pooling_mode_weightedmean_tokens": false,
         | 
| 8 | 
            +
              "pooling_mode_lasttoken": false,
         | 
| 9 | 
            +
              "include_prompt": true
         | 
| 10 | 
            +
            }
         | 
    	
        README.md
    ADDED
    
    | @@ -0,0 +1,235 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            ---
         | 
| 2 | 
            +
            base_model: mini1013/master_domain
         | 
| 3 | 
            +
            library_name: setfit
         | 
| 4 | 
            +
            metrics:
         | 
| 5 | 
            +
            - metric
         | 
| 6 | 
            +
            pipeline_tag: text-classification
         | 
| 7 | 
            +
            tags:
         | 
| 8 | 
            +
            - setfit
         | 
| 9 | 
            +
            - sentence-transformers
         | 
| 10 | 
            +
            - text-classification
         | 
| 11 | 
            +
            - generated_from_setfit_trainer
         | 
| 12 | 
            +
            widget:
         | 
| 13 | 
            +
            - text: IPTIME UC 305HDMI C타입 USB 멀티포트 노트북 확장 PD  (주)스마트포유
         | 
| 14 | 
            +
            - text: 로지텍 파워플레이 Logitech Powerplay 시스템 충전패드 병행수입 Power Play 주식회사 데나
         | 
| 15 | 
            +
            - text: PBT키캡 푸딩 이중사출 영문 정각 108 풀배열 키보드 화이트  몬스타 주식회사
         | 
| 16 | 
            +
            - text: 펠로우즈 i-spire rocking 미니손목받침대 그레이 93933 그레이 아이룸코리아
         | 
| 17 | 
            +
            - text: AMH 클리어 투웨이 4포트 USB3.0 허브 민트  주식회사보성닷컴
         | 
| 18 | 
            +
            inference: true
         | 
| 19 | 
            +
            model-index:
         | 
| 20 | 
            +
            - name: SetFit with mini1013/master_domain
         | 
| 21 | 
            +
              results:
         | 
| 22 | 
            +
              - task:
         | 
| 23 | 
            +
                  type: text-classification
         | 
| 24 | 
            +
                  name: Text Classification
         | 
| 25 | 
            +
                dataset:
         | 
| 26 | 
            +
                  name: Unknown
         | 
| 27 | 
            +
                  type: unknown
         | 
| 28 | 
            +
                  split: test
         | 
| 29 | 
            +
                metrics:
         | 
| 30 | 
            +
                - type: metric
         | 
| 31 | 
            +
                  value: 0.9550144449030128
         | 
| 32 | 
            +
                  name: Metric
         | 
| 33 | 
            +
            ---
         | 
| 34 | 
            +
             | 
| 35 | 
            +
            # SetFit with mini1013/master_domain
         | 
| 36 | 
            +
             | 
| 37 | 
            +
            This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
         | 
| 38 | 
            +
             | 
| 39 | 
            +
            The model has been trained using an efficient few-shot learning technique that involves:
         | 
| 40 | 
            +
             | 
| 41 | 
            +
            1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
         | 
| 42 | 
            +
            2. Training a classification head with features from the fine-tuned Sentence Transformer.
         | 
| 43 | 
            +
             | 
| 44 | 
            +
            ## Model Details
         | 
| 45 | 
            +
             | 
| 46 | 
            +
            ### Model Description
         | 
| 47 | 
            +
            - **Model Type:** SetFit
         | 
| 48 | 
            +
            - **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain)
         | 
| 49 | 
            +
            - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
         | 
| 50 | 
            +
            - **Maximum Sequence Length:** 512 tokens
         | 
| 51 | 
            +
            - **Number of Classes:** 9 classes
         | 
| 52 | 
            +
            <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
         | 
| 53 | 
            +
            <!-- - **Language:** Unknown -->
         | 
| 54 | 
            +
            <!-- - **License:** Unknown -->
         | 
| 55 | 
            +
             | 
| 56 | 
            +
            ### Model Sources
         | 
| 57 | 
            +
             | 
| 58 | 
            +
            - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
         | 
| 59 | 
            +
            - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
         | 
| 60 | 
            +
            - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
         | 
| 61 | 
            +
             | 
| 62 | 
            +
            ### Model Labels
         | 
| 63 | 
            +
            | Label | Examples                                                                                                                                                                                                                                            |
         | 
| 64 | 
            +
            |:------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
         | 
| 65 | 
            +
            | 2     | <ul><li>'몬스타기어 달토끼 PBT 체리 프로파일 키캡  주식회사 노벨뷰사이언스'</li><li>'[COX] 영문 키캡, CX158 158키 이색사출 PBT 키캡, OSA 프로파일 [오셀라리스]  (주)컴퓨존'</li><li>'벤큐 조위 CAMADE2 e-Sports 게이밍 마우스 번지대/마우스번지/카마데2  하이스트네트웍스 주식회사'</li></ul>                                           |
         | 
| 66 | 
            +
            | 5     | <ul><li>'지클릭커 클라우드 코튼 팜레스트 키보드 쿠션 손목 받침대 눈설탕 눈설탕 (주)수빈인포텍'</li><li>'ABKO ARC1 TKL 아크릴 팜레스트 키보드 손목 받침대 텐키리스용 아이스 아크릴  조은 정보'</li><li>'펠로우즈 크리스탈젤 미니손목받침대 CRC91477 / 보라  에이티쓰리'</li></ul>                                                             |
         | 
| 67 | 
            +
            | 8     | <ul><li>'로지텍 K380 키스킨  주식회사 제이앤디코퍼레이션'</li><li>'로지텍 K260 K270 K275 K295 MK275 MK295 키스킨 키보드커버 덮개 로지텍 K295 키스킨 현민트레이딩 주식회사'</li><li>'로지텍 K270 MK270R MK260R 키보드보호 키스킨  유비스마트'</li></ul>                                                              |
         | 
| 68 | 
            +
            | 4     | <ul><li>'지클릭커 모니터 필름 PET 부착식 정보 보안 노트북 화면 보호기 블루라이트 차단 12.5인치  현시스템'</li><li>'앱코 블루라이트 차단 양면 부착형 모니터 정보보안필름 와이드(16:9) IP-24W  주식회사 케이에스샵'</li><li>'펠로우즈 프라이버시 정보보안 필터 14.1인치 와이드 16:10 정보보호 필름 48006  와이티코리아 주식회사'</li></ul>                        |
         | 
| 69 | 
            +
            | 3     | <ul><li>'앱코 Pastel Desk Long Pad 마우스패드 파스텔 베이지 주식회사 승호'</li><li>'스틸시리즈 Qck Edge XL 게이밍 마우스패드  주식회사 엠앤���스'</li><li>'파스텔 방수 가죽 마우스 장패드 네이비 본조르노온라인 주식회사'</li></ul>                                                                                     |
         | 
| 70 | 
            +
            | 7     | <ul><li>'동성 만능크리너 60매 본품  (주)바오밥컴퍼니'</li><li>'동성크리너 동성 만능크리너 150매 (원통형)  주식회사 해인디지탈'</li><li>'일신 ECC-90 전기접점부활제 250g 리모콘 플스 닌텐도 스위치 조이콘 조이스틱 쏠림 접점세척제 벡스 BW-100 전기접점부활제 225g 모멘트리 (MOMENTREE)'</li></ul>                                            |
         | 
| 71 | 
            +
            | 6     | <ul><li>'전오 케이블타이 450mm 대용량 흰색 J-450 100개 국산  손소프트'</li><li>'베이스어스 마그네틱 케이블클립,선정리,케이블홀더 블랙(ACWDJ-01) 주식회사엠피맨코리아'</li><li>'전오 케이블타이 140MM 국산제품 전선정리 포장끈 작업현장 건설 농장 전자 공장 백색(1000개) 보람 LED'</li></ul>                                                 |
         | 
| 72 | 
            +
            | 1     | <ul><li>'ipTIME UH505 (기본구성) USB3.0 5포트 USB허브 5V3A 어댑터  (주)즐찾'</li><li>'EFM네트웍스 아이피타임 UH505  다사다 유한책임회사'</li><li>'벨킨 11in1 USB C타입 멀티 허브 독 100W 충전 HDMI VGA 이더넷 노트북 거치대형 INC004bt 아이폰15 갤럭시 S24 그램 맥북 노트북 호환 실버그레이(INC004btSGY) (주) 디지월드'</li></ul> |
         | 
| 73 | 
            +
            | 0     | <ul><li>'Coms DJ729 데스크탑 PC 이동형 스탠드 컴퓨터 본체 거치대 바퀴 이동식 블랙  루미너스'</li><li>'컴퓨터 본체 받침대 DJ729  주식회사보성닷컴'</li><li>'데스크탑 PC 본체 이동형 스탠드 DJ729  주식회사 지디스엠알오'</li></ul>                                                                                      |
         | 
| 74 | 
            +
             | 
| 75 | 
            +
            ## Evaluation
         | 
| 76 | 
            +
             | 
| 77 | 
            +
            ### Metrics
         | 
| 78 | 
            +
            | Label   | Metric |
         | 
| 79 | 
            +
            |:--------|:-------|
         | 
| 80 | 
            +
            | **all** | 0.9550 |
         | 
| 81 | 
            +
             | 
| 82 | 
            +
            ## Uses
         | 
| 83 | 
            +
             | 
| 84 | 
            +
            ### Direct Use for Inference
         | 
| 85 | 
            +
             | 
| 86 | 
            +
            First install the SetFit library:
         | 
| 87 | 
            +
             | 
| 88 | 
            +
            ```bash
         | 
| 89 | 
            +
            pip install setfit
         | 
| 90 | 
            +
            ```
         | 
| 91 | 
            +
             | 
| 92 | 
            +
            Then you can load this model and run inference.
         | 
| 93 | 
            +
             | 
| 94 | 
            +
            ```python
         | 
| 95 | 
            +
            from setfit import SetFitModel
         | 
| 96 | 
            +
             | 
| 97 | 
            +
            # Download from the 🤗 Hub
         | 
| 98 | 
            +
            model = SetFitModel.from_pretrained("mini1013/master_cate_el2")
         | 
| 99 | 
            +
            # Run inference
         | 
| 100 | 
            +
            preds = model("AMH 클리어 투웨이 4포트 USB3.0 허브 민트  주식회사보성닷컴")
         | 
| 101 | 
            +
            ```
         | 
| 102 | 
            +
             | 
| 103 | 
            +
            <!--
         | 
| 104 | 
            +
            ### Downstream Use
         | 
| 105 | 
            +
             | 
| 106 | 
            +
            *List how someone could finetune this model on their own dataset.*
         | 
| 107 | 
            +
            -->
         | 
| 108 | 
            +
             | 
| 109 | 
            +
            <!--
         | 
| 110 | 
            +
            ### Out-of-Scope Use
         | 
| 111 | 
            +
             | 
| 112 | 
            +
            *List how the model may foreseeably be misused and address what users ought not to do with the model.*
         | 
| 113 | 
            +
            -->
         | 
| 114 | 
            +
             | 
| 115 | 
            +
            <!--
         | 
| 116 | 
            +
            ## Bias, Risks and Limitations
         | 
| 117 | 
            +
             | 
| 118 | 
            +
            *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
         | 
| 119 | 
            +
            -->
         | 
| 120 | 
            +
             | 
| 121 | 
            +
            <!--
         | 
| 122 | 
            +
            ### Recommendations
         | 
| 123 | 
            +
             | 
| 124 | 
            +
            *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
         | 
| 125 | 
            +
            -->
         | 
| 126 | 
            +
             | 
| 127 | 
            +
            ## Training Details
         | 
| 128 | 
            +
             | 
| 129 | 
            +
            ### Training Set Metrics
         | 
| 130 | 
            +
            | Training set | Min | Median  | Max |
         | 
| 131 | 
            +
            |:-------------|:----|:--------|:----|
         | 
| 132 | 
            +
            | Word count   | 4   | 10.1397 | 25  |
         | 
| 133 | 
            +
             | 
| 134 | 
            +
            | Label | Training Sample Count |
         | 
| 135 | 
            +
            |:------|:----------------------|
         | 
| 136 | 
            +
            | 0     | 8                     |
         | 
| 137 | 
            +
            | 1     | 50                    |
         | 
| 138 | 
            +
            | 2     | 50                    |
         | 
| 139 | 
            +
            | 3     | 50                    |
         | 
| 140 | 
            +
            | 4     | 50                    |
         | 
| 141 | 
            +
            | 5     | 50                    |
         | 
| 142 | 
            +
            | 6     | 50                    |
         | 
| 143 | 
            +
            | 7     | 50                    |
         | 
| 144 | 
            +
            | 8     | 50                    |
         | 
| 145 | 
            +
             | 
| 146 | 
            +
            ### Training Hyperparameters
         | 
| 147 | 
            +
            - batch_size: (512, 512)
         | 
| 148 | 
            +
            - num_epochs: (20, 20)
         | 
| 149 | 
            +
            - max_steps: -1
         | 
| 150 | 
            +
            - sampling_strategy: oversampling
         | 
| 151 | 
            +
            - num_iterations: 40
         | 
| 152 | 
            +
            - body_learning_rate: (2e-05, 2e-05)
         | 
| 153 | 
            +
            - head_learning_rate: 2e-05
         | 
| 154 | 
            +
            - loss: CosineSimilarityLoss
         | 
| 155 | 
            +
            - distance_metric: cosine_distance
         | 
| 156 | 
            +
            - margin: 0.25
         | 
| 157 | 
            +
            - end_to_end: False
         | 
| 158 | 
            +
            - use_amp: False
         | 
| 159 | 
            +
            - warmup_proportion: 0.1
         | 
| 160 | 
            +
            - seed: 42
         | 
| 161 | 
            +
            - eval_max_steps: -1
         | 
| 162 | 
            +
            - load_best_model_at_end: False
         | 
| 163 | 
            +
             | 
| 164 | 
            +
            ### Training Results
         | 
| 165 | 
            +
            | Epoch   | Step | Training Loss | Validation Loss |
         | 
| 166 | 
            +
            |:-------:|:----:|:-------------:|:---------------:|
         | 
| 167 | 
            +
            | 0.0156  | 1    | 0.4963        | -               |
         | 
| 168 | 
            +
            | 0.7812  | 50   | 0.1854        | -               |
         | 
| 169 | 
            +
            | 1.5625  | 100  | 0.046         | -               |
         | 
| 170 | 
            +
            | 2.3438  | 150  | 0.0048        | -               |
         | 
| 171 | 
            +
            | 3.125   | 200  | 0.0168        | -               |
         | 
| 172 | 
            +
            | 3.9062  | 250  | 0.0002        | -               |
         | 
| 173 | 
            +
            | 4.6875  | 300  | 0.0001        | -               |
         | 
| 174 | 
            +
            | 5.4688  | 350  | 0.0001        | -               |
         | 
| 175 | 
            +
            | 6.25    | 400  | 0.0001        | -               |
         | 
| 176 | 
            +
            | 7.0312  | 450  | 0.0001        | -               |
         | 
| 177 | 
            +
            | 7.8125  | 500  | 0.0001        | -               |
         | 
| 178 | 
            +
            | 8.5938  | 550  | 0.0001        | -               |
         | 
| 179 | 
            +
            | 9.375   | 600  | 0.0001        | -               |
         | 
| 180 | 
            +
            | 10.1562 | 650  | 0.0001        | -               |
         | 
| 181 | 
            +
            | 10.9375 | 700  | 0.0           | -               |
         | 
| 182 | 
            +
            | 11.7188 | 750  | 0.0001        | -               |
         | 
| 183 | 
            +
            | 12.5    | 800  | 0.0           | -               |
         | 
| 184 | 
            +
            | 13.2812 | 850  | 0.0           | -               |
         | 
| 185 | 
            +
            | 14.0625 | 900  | 0.0           | -               |
         | 
| 186 | 
            +
            | 14.8438 | 950  | 0.0           | -               |
         | 
| 187 | 
            +
            | 15.625  | 1000 | 0.0           | -               |
         | 
| 188 | 
            +
            | 16.4062 | 1050 | 0.0001        | -               |
         | 
| 189 | 
            +
            | 17.1875 | 1100 | 0.0           | -               |
         | 
| 190 | 
            +
            | 17.9688 | 1150 | 0.0           | -               |
         | 
| 191 | 
            +
            | 18.75   | 1200 | 0.0           | -               |
         | 
| 192 | 
            +
            | 19.5312 | 1250 | 0.0           | -               |
         | 
| 193 | 
            +
             | 
| 194 | 
            +
            ### Framework Versions
         | 
| 195 | 
            +
            - Python: 3.10.12
         | 
| 196 | 
            +
            - SetFit: 1.1.0.dev0
         | 
| 197 | 
            +
            - Sentence Transformers: 3.1.1
         | 
| 198 | 
            +
            - Transformers: 4.46.1
         | 
| 199 | 
            +
            - PyTorch: 2.4.0+cu121
         | 
| 200 | 
            +
            - Datasets: 2.20.0
         | 
| 201 | 
            +
            - Tokenizers: 0.20.0
         | 
| 202 | 
            +
             | 
| 203 | 
            +
            ## Citation
         | 
| 204 | 
            +
             | 
| 205 | 
            +
            ### BibTeX
         | 
| 206 | 
            +
            ```bibtex
         | 
| 207 | 
            +
            @article{https://doi.org/10.48550/arxiv.2209.11055,
         | 
| 208 | 
            +
                doi = {10.48550/ARXIV.2209.11055},
         | 
| 209 | 
            +
                url = {https://arxiv.org/abs/2209.11055},
         | 
| 210 | 
            +
                author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
         | 
| 211 | 
            +
                keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
         | 
| 212 | 
            +
                title = {Efficient Few-Shot Learning Without Prompts},
         | 
| 213 | 
            +
                publisher = {arXiv},
         | 
| 214 | 
            +
                year = {2022},
         | 
| 215 | 
            +
                copyright = {Creative Commons Attribution 4.0 International}
         | 
| 216 | 
            +
            }
         | 
| 217 | 
            +
            ```
         | 
| 218 | 
            +
             | 
| 219 | 
            +
            <!--
         | 
| 220 | 
            +
            ## Glossary
         | 
| 221 | 
            +
             | 
| 222 | 
            +
            *Clearly define terms in order to be accessible across audiences.*
         | 
| 223 | 
            +
            -->
         | 
| 224 | 
            +
             | 
| 225 | 
            +
            <!--
         | 
| 226 | 
            +
            ## Model Card Authors
         | 
| 227 | 
            +
             | 
| 228 | 
            +
            *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
         | 
| 229 | 
            +
            -->
         | 
| 230 | 
            +
             | 
| 231 | 
            +
            <!--
         | 
| 232 | 
            +
            ## Model Card Contact
         | 
| 233 | 
            +
             | 
| 234 | 
            +
            *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
         | 
| 235 | 
            +
            -->
         | 
    	
        config.json
    ADDED
    
    | @@ -0,0 +1,29 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
              "_name_or_path": "mini1013/master_item_el",
         | 
| 3 | 
            +
              "architectures": [
         | 
| 4 | 
            +
                "RobertaModel"
         | 
| 5 | 
            +
              ],
         | 
| 6 | 
            +
              "attention_probs_dropout_prob": 0.1,
         | 
| 7 | 
            +
              "bos_token_id": 0,
         | 
| 8 | 
            +
              "classifier_dropout": null,
         | 
| 9 | 
            +
              "eos_token_id": 2,
         | 
| 10 | 
            +
              "gradient_checkpointing": false,
         | 
| 11 | 
            +
              "hidden_act": "gelu",
         | 
| 12 | 
            +
              "hidden_dropout_prob": 0.1,
         | 
| 13 | 
            +
              "hidden_size": 768,
         | 
| 14 | 
            +
              "initializer_range": 0.02,
         | 
| 15 | 
            +
              "intermediate_size": 3072,
         | 
| 16 | 
            +
              "layer_norm_eps": 1e-05,
         | 
| 17 | 
            +
              "max_position_embeddings": 514,
         | 
| 18 | 
            +
              "model_type": "roberta",
         | 
| 19 | 
            +
              "num_attention_heads": 12,
         | 
| 20 | 
            +
              "num_hidden_layers": 12,
         | 
| 21 | 
            +
              "pad_token_id": 1,
         | 
| 22 | 
            +
              "position_embedding_type": "absolute",
         | 
| 23 | 
            +
              "tokenizer_class": "BertTokenizer",
         | 
| 24 | 
            +
              "torch_dtype": "float32",
         | 
| 25 | 
            +
              "transformers_version": "4.46.1",
         | 
| 26 | 
            +
              "type_vocab_size": 1,
         | 
| 27 | 
            +
              "use_cache": true,
         | 
| 28 | 
            +
              "vocab_size": 32000
         | 
| 29 | 
            +
            }
         | 
    	
        config_sentence_transformers.json
    ADDED
    
    | @@ -0,0 +1,10 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
              "__version__": {
         | 
| 3 | 
            +
                "sentence_transformers": "3.1.1",
         | 
| 4 | 
            +
                "transformers": "4.46.1",
         | 
| 5 | 
            +
                "pytorch": "2.4.0+cu121"
         | 
| 6 | 
            +
              },
         | 
| 7 | 
            +
              "prompts": {},
         | 
| 8 | 
            +
              "default_prompt_name": null,
         | 
| 9 | 
            +
              "similarity_fn_name": null
         | 
| 10 | 
            +
            }
         | 
    	
        config_setfit.json
    ADDED
    
    | @@ -0,0 +1,4 @@ | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
              "labels": null,
         | 
| 3 | 
            +
              "normalize_embeddings": false
         | 
| 4 | 
            +
            }
         | 
    	
        model.safetensors
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:8161d5d0e19aacbb9645f7efa6073a32f26a5830e6acfb1a63c7909d17feaa03
         | 
| 3 | 
            +
            size 442494816
         | 
    	
        model_head.pkl
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:619bb82d2ab0cb7d119bb3a406b7ff6e440d6bce3958c8fcc2a7cebffb440fe7
         | 
| 3 | 
            +
            size 56287
         | 
    	
        modules.json
    ADDED
    
    | @@ -0,0 +1,14 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            [
         | 
| 2 | 
            +
              {
         | 
| 3 | 
            +
                "idx": 0,
         | 
| 4 | 
            +
                "name": "0",
         | 
| 5 | 
            +
                "path": "",
         | 
| 6 | 
            +
                "type": "sentence_transformers.models.Transformer"
         | 
| 7 | 
            +
              },
         | 
| 8 | 
            +
              {
         | 
| 9 | 
            +
                "idx": 1,
         | 
| 10 | 
            +
                "name": "1",
         | 
| 11 | 
            +
                "path": "1_Pooling",
         | 
| 12 | 
            +
                "type": "sentence_transformers.models.Pooling"
         | 
| 13 | 
            +
              }
         | 
| 14 | 
            +
            ]
         | 
    	
        sentence_bert_config.json
    ADDED
    
    | @@ -0,0 +1,4 @@ | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
              "max_seq_length": 512,
         | 
| 3 | 
            +
              "do_lower_case": false
         | 
| 4 | 
            +
            }
         | 
    	
        special_tokens_map.json
    ADDED
    
    | @@ -0,0 +1,51 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
              "bos_token": {
         | 
| 3 | 
            +
                "content": "[CLS]",
         | 
| 4 | 
            +
                "lstrip": false,
         | 
| 5 | 
            +
                "normalized": false,
         | 
| 6 | 
            +
                "rstrip": false,
         | 
| 7 | 
            +
                "single_word": false
         | 
| 8 | 
            +
              },
         | 
| 9 | 
            +
              "cls_token": {
         | 
| 10 | 
            +
                "content": "[CLS]",
         | 
| 11 | 
            +
                "lstrip": false,
         | 
| 12 | 
            +
                "normalized": false,
         | 
| 13 | 
            +
                "rstrip": false,
         | 
| 14 | 
            +
                "single_word": false
         | 
| 15 | 
            +
              },
         | 
| 16 | 
            +
              "eos_token": {
         | 
| 17 | 
            +
                "content": "[SEP]",
         | 
| 18 | 
            +
                "lstrip": false,
         | 
| 19 | 
            +
                "normalized": false,
         | 
| 20 | 
            +
                "rstrip": false,
         | 
| 21 | 
            +
                "single_word": false
         | 
| 22 | 
            +
              },
         | 
| 23 | 
            +
              "mask_token": {
         | 
| 24 | 
            +
                "content": "[MASK]",
         | 
| 25 | 
            +
                "lstrip": false,
         | 
| 26 | 
            +
                "normalized": false,
         | 
| 27 | 
            +
                "rstrip": false,
         | 
| 28 | 
            +
                "single_word": false
         | 
| 29 | 
            +
              },
         | 
| 30 | 
            +
              "pad_token": {
         | 
| 31 | 
            +
                "content": "[PAD]",
         | 
| 32 | 
            +
                "lstrip": false,
         | 
| 33 | 
            +
                "normalized": false,
         | 
| 34 | 
            +
                "rstrip": false,
         | 
| 35 | 
            +
                "single_word": false
         | 
| 36 | 
            +
              },
         | 
| 37 | 
            +
              "sep_token": {
         | 
| 38 | 
            +
                "content": "[SEP]",
         | 
| 39 | 
            +
                "lstrip": false,
         | 
| 40 | 
            +
                "normalized": false,
         | 
| 41 | 
            +
                "rstrip": false,
         | 
| 42 | 
            +
                "single_word": false
         | 
| 43 | 
            +
              },
         | 
| 44 | 
            +
              "unk_token": {
         | 
| 45 | 
            +
                "content": "[UNK]",
         | 
| 46 | 
            +
                "lstrip": false,
         | 
| 47 | 
            +
                "normalized": false,
         | 
| 48 | 
            +
                "rstrip": false,
         | 
| 49 | 
            +
                "single_word": false
         | 
| 50 | 
            +
              }
         | 
| 51 | 
            +
            }
         | 
    	
        tokenizer.json
    ADDED
    
    | The diff for this file is too large to render. 
		See raw diff | 
|  | 
    	
        tokenizer_config.json
    ADDED
    
    | @@ -0,0 +1,66 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
              "added_tokens_decoder": {
         | 
| 3 | 
            +
                "0": {
         | 
| 4 | 
            +
                  "content": "[CLS]",
         | 
| 5 | 
            +
                  "lstrip": false,
         | 
| 6 | 
            +
                  "normalized": false,
         | 
| 7 | 
            +
                  "rstrip": false,
         | 
| 8 | 
            +
                  "single_word": false,
         | 
| 9 | 
            +
                  "special": true
         | 
| 10 | 
            +
                },
         | 
| 11 | 
            +
                "1": {
         | 
| 12 | 
            +
                  "content": "[PAD]",
         | 
| 13 | 
            +
                  "lstrip": false,
         | 
| 14 | 
            +
                  "normalized": false,
         | 
| 15 | 
            +
                  "rstrip": false,
         | 
| 16 | 
            +
                  "single_word": false,
         | 
| 17 | 
            +
                  "special": true
         | 
| 18 | 
            +
                },
         | 
| 19 | 
            +
                "2": {
         | 
| 20 | 
            +
                  "content": "[SEP]",
         | 
| 21 | 
            +
                  "lstrip": false,
         | 
| 22 | 
            +
                  "normalized": false,
         | 
| 23 | 
            +
                  "rstrip": false,
         | 
| 24 | 
            +
                  "single_word": false,
         | 
| 25 | 
            +
                  "special": true
         | 
| 26 | 
            +
                },
         | 
| 27 | 
            +
                "3": {
         | 
| 28 | 
            +
                  "content": "[UNK]",
         | 
| 29 | 
            +
                  "lstrip": false,
         | 
| 30 | 
            +
                  "normalized": false,
         | 
| 31 | 
            +
                  "rstrip": false,
         | 
| 32 | 
            +
                  "single_word": false,
         | 
| 33 | 
            +
                  "special": true
         | 
| 34 | 
            +
                },
         | 
| 35 | 
            +
                "4": {
         | 
| 36 | 
            +
                  "content": "[MASK]",
         | 
| 37 | 
            +
                  "lstrip": false,
         | 
| 38 | 
            +
                  "normalized": false,
         | 
| 39 | 
            +
                  "rstrip": false,
         | 
| 40 | 
            +
                  "single_word": false,
         | 
| 41 | 
            +
                  "special": true
         | 
| 42 | 
            +
                }
         | 
| 43 | 
            +
              },
         | 
| 44 | 
            +
              "bos_token": "[CLS]",
         | 
| 45 | 
            +
              "clean_up_tokenization_spaces": false,
         | 
| 46 | 
            +
              "cls_token": "[CLS]",
         | 
| 47 | 
            +
              "do_basic_tokenize": true,
         | 
| 48 | 
            +
              "do_lower_case": false,
         | 
| 49 | 
            +
              "eos_token": "[SEP]",
         | 
| 50 | 
            +
              "mask_token": "[MASK]",
         | 
| 51 | 
            +
              "max_length": 512,
         | 
| 52 | 
            +
              "model_max_length": 512,
         | 
| 53 | 
            +
              "never_split": null,
         | 
| 54 | 
            +
              "pad_to_multiple_of": null,
         | 
| 55 | 
            +
              "pad_token": "[PAD]",
         | 
| 56 | 
            +
              "pad_token_type_id": 0,
         | 
| 57 | 
            +
              "padding_side": "right",
         | 
| 58 | 
            +
              "sep_token": "[SEP]",
         | 
| 59 | 
            +
              "stride": 0,
         | 
| 60 | 
            +
              "strip_accents": null,
         | 
| 61 | 
            +
              "tokenize_chinese_chars": true,
         | 
| 62 | 
            +
              "tokenizer_class": "BertTokenizer",
         | 
| 63 | 
            +
              "truncation_side": "right",
         | 
| 64 | 
            +
              "truncation_strategy": "longest_first",
         | 
| 65 | 
            +
              "unk_token": "[UNK]"
         | 
| 66 | 
            +
            }
         | 
    	
        vocab.txt
    ADDED
    
    | The diff for this file is too large to render. 
		See raw diff | 
|  |