--- base_model: mini1013/master_domain library_name: setfit metrics: - accuracy pipeline_tag: text-classification tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer widget: - text: '[피부과전용]리쥬란 힐링 아이젤 15ml +샘플키트+마스크팩 옵션없음 더마초이스' - text: 참존 탑클래스 리프팅 스킨 120ml 옵션없음 하루뷰티 - text: Is Clinical 이즈클리니컬 퍼밍 콤플렉스 50ml/1.7oz 옵션없음 타임투글로벌 - text: 데저트 에센스 퓨어 호호바오일 118ml 59ml+59ml 우성글로벌 - text: AHC 누드 톤업 크림 내추럴 글로우 40ml+컨실링스틱 3.5g 2개 O1B_01)크림40ml+스틱3.5g2개 (주)카버코리아 inference: true model-index: - name: SetFit with mini1013/master_domain results: - task: type: text-classification name: Text Classification dataset: name: Unknown type: unknown split: test metrics: - type: accuracy value: 0.7988636363636363 name: Accuracy --- # SetFit with mini1013/master_domain This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 512 tokens - **Number of Classes:** 11 classes ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 6.0 | | | 1.0 | | | 10.0 | | | 7.0 | | | 4.0 | | | 9.0 | | | 0.0 | | | 8.0 | | | 2.0 | | | 3.0 | | | 5.0 | | ## Evaluation ### Metrics | Label | Accuracy | |:--------|:---------| | **all** | 0.7989 | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the 🤗 Hub model = SetFitModel.from_pretrained("mini1013/master_cate_bt8_test") # Run inference preds = model("참존 탑클래스 리프팅 스킨 120ml 옵션없음 하루뷰티") ``` ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:-------|:----| | Word count | 4 | 9.2179 | 23 | | Label | Training Sample Count | |:------|:----------------------| | 0.0 | 18 | | 1.0 | 18 | | 2.0 | 22 | | 3.0 | 20 | | 4.0 | 32 | | 5.0 | 30 | | 6.0 | 40 | | 7.0 | 23 | | 8.0 | 17 | | 9.0 | 14 | | 10.0 | 23 | ### Training Hyperparameters - batch_size: (512, 512) - num_epochs: (50, 50) - max_steps: -1 - sampling_strategy: oversampling - num_iterations: 60 - body_learning_rate: (2e-05, 1e-05) - head_learning_rate: 0.01 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - l2_weight: 0.01 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: False ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:-------:|:----:|:-------------:|:---------------:| | 0.0323 | 1 | 0.4874 | - | | 1.6129 | 50 | 0.3751 | - | | 3.2258 | 100 | 0.0862 | - | | 4.8387 | 150 | 0.0251 | - | | 6.4516 | 200 | 0.0101 | - | | 8.0645 | 250 | 0.0042 | - | | 9.6774 | 300 | 0.0045 | - | | 11.2903 | 350 | 0.0044 | - | | 12.9032 | 400 | 0.0041 | - | | 14.5161 | 450 | 0.0043 | - | | 16.1290 | 500 | 0.0042 | - | | 17.7419 | 550 | 0.0042 | - | | 19.3548 | 600 | 0.004 | - | | 20.9677 | 650 | 0.0043 | - | | 22.5806 | 700 | 0.0042 | - | | 24.1935 | 750 | 0.004 | - | | 25.8065 | 800 | 0.0004 | - | | 27.4194 | 850 | 0.0001 | - | | 29.0323 | 900 | 0.0001 | - | | 30.6452 | 950 | 0.0001 | - | | 32.2581 | 1000 | 0.0001 | - | | 33.8710 | 1050 | 0.0001 | - | | 35.4839 | 1100 | 0.0001 | - | | 37.0968 | 1150 | 0.0001 | - | | 38.7097 | 1200 | 0.0001 | - | | 40.3226 | 1250 | 0.0001 | - | | 41.9355 | 1300 | 0.0001 | - | | 43.5484 | 1350 | 0.0001 | - | | 45.1613 | 1400 | 0.0001 | - | | 46.7742 | 1450 | 0.0001 | - | | 48.3871 | 1500 | 0.0001 | - | | 50.0 | 1550 | 0.0001 | - | ### Framework Versions - Python: 3.10.12 - SetFit: 1.1.0 - Sentence Transformers: 3.3.1 - Transformers: 4.44.2 - PyTorch: 2.2.0a0+81ea7a4 - Datasets: 3.2.0 - Tokenizers: 0.19.1 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```