mini1013 commited on
Commit
8aaaba2
·
verified ·
1 Parent(s): a84ba9e

Push model using huggingface_hub.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,235 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: mini1013/master_domain
3
+ library_name: setfit
4
+ metrics:
5
+ - accuracy
6
+ pipeline_tag: text-classification
7
+ tags:
8
+ - setfit
9
+ - sentence-transformers
10
+ - text-classification
11
+ - generated_from_setfit_trainer
12
+ widget:
13
+ - text: 듀크레이 덱시안 메드 아이리드 크림 15ml 피부과 옵션없음 비타콕
14
+ - text: 라벤더 일회용 여성로션 3ML 옵션없음 동양유통
15
+ - text: KAHI 멀티밤 리필키트 x 2개 옵션없음 에프엔지트렌드
16
+ - text: 토니어 유기농 호호바 오일 30ml 옵션없음 주식회사 아람케이
17
+ - text: 치카이치코 누드 판타지 화이트닝 크림 55ml 옵션없음 다물다선
18
+ inference: true
19
+ model-index:
20
+ - name: SetFit with mini1013/master_domain
21
+ results:
22
+ - task:
23
+ type: text-classification
24
+ name: Text Classification
25
+ dataset:
26
+ name: Unknown
27
+ type: unknown
28
+ split: test
29
+ metrics:
30
+ - type: accuracy
31
+ value: 0.821590909090909
32
+ name: Accuracy
33
+ ---
34
+
35
+ # SetFit with mini1013/master_domain
36
+
37
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
38
+
39
+ The model has been trained using an efficient few-shot learning technique that involves:
40
+
41
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
42
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
43
+
44
+ ## Model Details
45
+
46
+ ### Model Description
47
+ - **Model Type:** SetFit
48
+ - **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain)
49
+ - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
50
+ - **Maximum Sequence Length:** 512 tokens
51
+ - **Number of Classes:** 11 classes
52
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
53
+ <!-- - **Language:** Unknown -->
54
+ <!-- - **License:** Unknown -->
55
+
56
+ ### Model Sources
57
+
58
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
59
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
60
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
61
+
62
+ ### Model Labels
63
+ | Label | Examples |
64
+ |:------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
65
+ | 6.0 | <ul><li>'가히 멀티 밤 리필형 9g x 1개(본품) + 9g x 3개(리필) 옵션없음 주식회사 제이제이몰'</li><li>'김정문알로에 큐어플러스 인텐시브 2x 크림 50g 3개 옵션없음 리틀리아'</li><li>'Good Molecules 젠틀 레티놀 크림 레티놀과 바쿠치올이 함유된 나이트 과색소 침 옵션없음 비포유'</li></ul> |
66
+ | 1.0 | <ul><li>'크리니크 드라마티컬리 디퍼런트 모이스처라이징 젤 125ml(건성, 중복합) 옵션없음 옐로우로켓'</li><li>'크리니크 드라마티컬리 디퍼런트 모이스처라이징 젤 125ml(건성, 중복합성) 옵션없음 샹양무역 유한회사'</li><li>'[케이스훼손] 더 후 공진향 인양 로션 110ml (케이스훼손) 인양 로션. 주식회사 포러스'</li></ul> |
67
+ | 10.0 | <ul><li>'한율 송담 탄력 기초 2종 세트 (스킨+에멀젼) 기초 스킨 로션 여성 부모님화장품 스킨+에멀젼+아이크림+크림 홈뷰티샵'</li><li>'오휘 더 퍼스트 제너츄어 3종 스페셜 세트 옵션없음 브라우니박스2'</li><li>'쟝블랑 그린티 밸런싱 여성 3종세트 옵션없음 아 이리스'</li></ul> |
68
+ | 7.0 | <ul><li>'[SKINFOOD] 캐롯 카로틴 카밍 워터패드 30매 (NEW 집게+패드케이스 ) 당근 (주)더블유컨셉코리아'</li><li>'메디힐 티트리 트러블 패드 100매 + 리필 100매 옵션없음 미뇨네'</li><li>'프리업 원더 포어 클리어 패드 휴대용 키트 10개입 옵션없음 주식회사 브랜드커머스'</li></ul> |
69
+ | 4.0 | <ul><li>'에뛰드 모이스트풀 콜라겐 아이 크림 28ml Moistfull Collagen Eye Cream 옵션없음 월드세븐'</li><li>'마티나겝하르트 아보카도 아이크림 15ml 옵션없음 포비티엘'</li><li>'가히 아이밤 옵션없음 남영오'</li></ul> |
70
+ | 9.0 | <ul><li>'안나홀츠 호호바오일 에코서트인증 유기농 압착 비정제 천연 호호바오일 60ml 2병 옵션���음 (주)안나홀츠'</li><li>'스킨아이 유기농 티트리 오일 옵션없음 폴슨 주식회사(FOLSN Inc.)'</li><li>'[3개세트] 유기농 티트리 오일 10ml 옵션없음 주식회사 보나쥬르'</li></ul> |
71
+ | 0.0 | <ul><li>'멀티밤스틱 주름지우개 보툴레닌 기가스틱 넥스젠바이오'</li><li>'벨라수 데콜테 넥크림 50ml 벨라수'</li><li>'종근당 CKD 레티노 콜라겐 저분자 300 괄사 목주름 크림 50ml 동의함 일랑팩토리'</li></ul> |
72
+ | 8.0 | <ul><li>'AHC 누드톤업크림 내추럴글로우 40ml 옵션없음 가온'</li><li>'AHC 아우라 시크릿 톤업크림 50g 옵션없음 마리공주'</li><li>'AHC 톤업크림 아우라 시크릿 50g 옵션없음 쇼핑사거리'</li></ul> |
73
+ | 2.0 | <ul><li>'자트인사이트 울트라 셋팅 진짜 픽서 50ml 2개 옵션없음 솔마켓'</li><li>'ECLADO (1+1) NK-CX 프로틴 포텐 부스터 100ml 뿌리는 단백질 [1+1]NK-CX 포텐부스터 하이그래'</li><li>'CNP 차앤박 프로폴리스 에너지 앰플 미스트 250ml 1개 옵션없음 주식회사 아이지비'</li></ul> |
74
+ | 3.0 | <ul><li>'네이처리퍼블릭 리얼 스퀴즈 알로에 베라 토너 150ml(신형) 옵션없음 마켓유'</li><li>'허브 솔루션 위치하젤 토너 500ml / 1개 허브 솔루션 알로에 베라 토너 500ml 듀얼샵'</li><li>'르네셀 멀티 펩타이드 토너(재고정리) 옵션없음 숙이네 잡화'</li></ul> |
75
+ | 5.0 | <ul><li>'브링그린 알로에 99% 수딩 젤 300ml(민감성)/JL 옵션없음 주식회사 제이엘'</li><li>'브링그린 알로에 99% 수딩젤 300ml 옵션없음 모현'</li><li>'350211 포어 슈링커 바쿠치올 세럼 50ml 옵션없음 제이에프무역'</li></ul> |
76
+
77
+ ## Evaluation
78
+
79
+ ### Metrics
80
+ | Label | Accuracy |
81
+ |:--------|:---------|
82
+ | **all** | 0.8216 |
83
+
84
+ ## Uses
85
+
86
+ ### Direct Use for Inference
87
+
88
+ First install the SetFit library:
89
+
90
+ ```bash
91
+ pip install setfit
92
+ ```
93
+
94
+ Then you can load this model and run inference.
95
+
96
+ ```python
97
+ from setfit import SetFitModel
98
+
99
+ # Download from the 🤗 Hub
100
+ model = SetFitModel.from_pretrained("mini1013/master_cate_bt8_test")
101
+ # Run inference
102
+ preds = model("라벤더 일회용 여성로션 3ML 옵션없음 동양유통")
103
+ ```
104
+
105
+ <!--
106
+ ### Downstream Use
107
+
108
+ *List how someone could finetune this model on their own dataset.*
109
+ -->
110
+
111
+ <!--
112
+ ### Out-of-Scope Use
113
+
114
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
115
+ -->
116
+
117
+ <!--
118
+ ## Bias, Risks and Limitations
119
+
120
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
121
+ -->
122
+
123
+ <!--
124
+ ### Recommendations
125
+
126
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
127
+ -->
128
+
129
+ ## Training Details
130
+
131
+ ### Training Set Metrics
132
+ | Training set | Min | Median | Max |
133
+ |:-------------|:----|:-------|:----|
134
+ | Word count | 4 | 9.2179 | 23 |
135
+
136
+ | Label | Training Sample Count |
137
+ |:------|:----------------------|
138
+ | 0.0 | 18 |
139
+ | 1.0 | 18 |
140
+ | 2.0 | 22 |
141
+ | 3.0 | 20 |
142
+ | 4.0 | 32 |
143
+ | 5.0 | 30 |
144
+ | 6.0 | 40 |
145
+ | 7.0 | 23 |
146
+ | 8.0 | 17 |
147
+ | 9.0 | 14 |
148
+ | 10.0 | 23 |
149
+
150
+ ### Training Hyperparameters
151
+ - batch_size: (512, 512)
152
+ - num_epochs: (40, 40)
153
+ - max_steps: -1
154
+ - sampling_strategy: oversampling
155
+ - num_iterations: 50
156
+ - body_learning_rate: (2e-05, 1e-05)
157
+ - head_learning_rate: 0.01
158
+ - loss: CosineSimilarityLoss
159
+ - distance_metric: cosine_distance
160
+ - margin: 0.25
161
+ - end_to_end: False
162
+ - use_amp: False
163
+ - warmup_proportion: 0.1
164
+ - l2_weight: 0.01
165
+ - seed: 42
166
+ - eval_max_steps: -1
167
+ - load_best_model_at_end: False
168
+
169
+ ### Training Results
170
+ | Epoch | Step | Training Loss | Validation Loss |
171
+ |:-------:|:----:|:-------------:|:---------------:|
172
+ | 0.0385 | 1 | 0.4822 | - |
173
+ | 1.9231 | 50 | 0.3286 | - |
174
+ | 3.8462 | 100 | 0.0503 | - |
175
+ | 5.7692 | 150 | 0.028 | - |
176
+ | 7.6923 | 200 | 0.0213 | - |
177
+ | 9.6154 | 250 | 0.0084 | - |
178
+ | 11.5385 | 300 | 0.0002 | - |
179
+ | 13.4615 | 350 | 0.0001 | - |
180
+ | 15.3846 | 400 | 0.0001 | - |
181
+ | 17.3077 | 450 | 0.0001 | - |
182
+ | 19.2308 | 500 | 0.0001 | - |
183
+ | 21.1538 | 550 | 0.0001 | - |
184
+ | 23.0769 | 600 | 0.0001 | - |
185
+ | 25.0 | 650 | 0.0001 | - |
186
+ | 26.9231 | 700 | 0.0 | - |
187
+ | 28.8462 | 750 | 0.0 | - |
188
+ | 30.7692 | 800 | 0.0 | - |
189
+ | 32.6923 | 850 | 0.0 | - |
190
+ | 34.6154 | 900 | 0.0 | - |
191
+ | 36.5385 | 950 | 0.0 | - |
192
+ | 38.4615 | 1000 | 0.0 | - |
193
+
194
+ ### Framework Versions
195
+ - Python: 3.10.12
196
+ - SetFit: 1.1.0
197
+ - Sentence Transformers: 3.3.1
198
+ - Transformers: 4.44.2
199
+ - PyTorch: 2.2.0a0+81ea7a4
200
+ - Datasets: 3.2.0
201
+ - Tokenizers: 0.19.1
202
+
203
+ ## Citation
204
+
205
+ ### BibTeX
206
+ ```bibtex
207
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
208
+ doi = {10.48550/ARXIV.2209.11055},
209
+ url = {https://arxiv.org/abs/2209.11055},
210
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
211
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
212
+ title = {Efficient Few-Shot Learning Without Prompts},
213
+ publisher = {arXiv},
214
+ year = {2022},
215
+ copyright = {Creative Commons Attribution 4.0 International}
216
+ }
217
+ ```
218
+
219
+ <!--
220
+ ## Glossary
221
+
222
+ *Clearly define terms in order to be accessible across audiences.*
223
+ -->
224
+
225
+ <!--
226
+ ## Model Card Authors
227
+
228
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
229
+ -->
230
+
231
+ <!--
232
+ ## Model Card Contact
233
+
234
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
235
+ -->
config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "mini1013/master_item_bt_test",
3
+ "architectures": [
4
+ "RobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "gradient_checkpointing": false,
11
+ "hidden_act": "gelu",
12
+ "hidden_dropout_prob": 0.1,
13
+ "hidden_size": 768,
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 3072,
16
+ "layer_norm_eps": 1e-05,
17
+ "max_position_embeddings": 514,
18
+ "model_type": "roberta",
19
+ "num_attention_heads": 12,
20
+ "num_hidden_layers": 12,
21
+ "pad_token_id": 1,
22
+ "position_embedding_type": "absolute",
23
+ "tokenizer_class": "BertTokenizer",
24
+ "torch_dtype": "float32",
25
+ "transformers_version": "4.44.2",
26
+ "type_vocab_size": 1,
27
+ "use_cache": true,
28
+ "vocab_size": 32000
29
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.3.1",
4
+ "transformers": "4.44.2",
5
+ "pytorch": "2.2.0a0+81ea7a4"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
config_setfit.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "labels": null,
3
+ "normalize_embeddings": false
4
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8110a7c420ae7917f1b0bb50097a0cdb5eded2d580344aebf863e4f158062d1f
3
+ size 442494816
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d575e24a235e5ea2dbff875ab2b198312f2076eedb67f22a963c0cbb8010191e
3
+ size 68575
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "[CLS]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "[SEP]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "[MASK]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "[PAD]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "[SEP]",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[CLS]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "[PAD]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "[SEP]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "[UNK]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "4": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "[CLS]",
45
+ "clean_up_tokenization_spaces": false,
46
+ "cls_token": "[CLS]",
47
+ "do_basic_tokenize": true,
48
+ "do_lower_case": false,
49
+ "eos_token": "[SEP]",
50
+ "mask_token": "[MASK]",
51
+ "max_length": 512,
52
+ "model_max_length": 512,
53
+ "never_split": null,
54
+ "pad_to_multiple_of": null,
55
+ "pad_token": "[PAD]",
56
+ "pad_token_type_id": 0,
57
+ "padding_side": "right",
58
+ "sep_token": "[SEP]",
59
+ "stride": 0,
60
+ "strip_accents": null,
61
+ "tokenize_chinese_chars": true,
62
+ "tokenizer_class": "BertTokenizer",
63
+ "truncation_side": "right",
64
+ "truncation_strategy": "longest_first",
65
+ "unk_token": "[UNK]"
66
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff