Push model using huggingface_hub.
Browse files- 1_Pooling/config.json +10 -0
- README.md +235 -0
- config.json +29 -0
- config_sentence_transformers.json +10 -0
- config_setfit.json +4 -0
- model.safetensors +3 -0
- model_head.pkl +3 -0
- modules.json +14 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +51 -0
- tokenizer.json +0 -0
- tokenizer_config.json +66 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
ADDED
@@ -0,0 +1,235 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: mini1013/master_domain
|
3 |
+
library_name: setfit
|
4 |
+
metrics:
|
5 |
+
- accuracy
|
6 |
+
pipeline_tag: text-classification
|
7 |
+
tags:
|
8 |
+
- setfit
|
9 |
+
- sentence-transformers
|
10 |
+
- text-classification
|
11 |
+
- generated_from_setfit_trainer
|
12 |
+
widget:
|
13 |
+
- text: 듀크레이 덱시안 메드 아이리드 크림 15ml 피부과 옵션없음 비타콕
|
14 |
+
- text: 라벤더 일회용 여성로션 3ML 옵션없음 동양유통
|
15 |
+
- text: KAHI 멀티밤 리필키트 x 2개 옵션없음 에프엔지트렌드
|
16 |
+
- text: 토니어 유기농 호호바 오일 30ml 옵션없음 주식회사 아람케이
|
17 |
+
- text: 치카이치코 누드 판타지 화이트닝 크림 55ml 옵션없음 다물다선
|
18 |
+
inference: true
|
19 |
+
model-index:
|
20 |
+
- name: SetFit with mini1013/master_domain
|
21 |
+
results:
|
22 |
+
- task:
|
23 |
+
type: text-classification
|
24 |
+
name: Text Classification
|
25 |
+
dataset:
|
26 |
+
name: Unknown
|
27 |
+
type: unknown
|
28 |
+
split: test
|
29 |
+
metrics:
|
30 |
+
- type: accuracy
|
31 |
+
value: 0.821590909090909
|
32 |
+
name: Accuracy
|
33 |
+
---
|
34 |
+
|
35 |
+
# SetFit with mini1013/master_domain
|
36 |
+
|
37 |
+
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
|
38 |
+
|
39 |
+
The model has been trained using an efficient few-shot learning technique that involves:
|
40 |
+
|
41 |
+
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
|
42 |
+
2. Training a classification head with features from the fine-tuned Sentence Transformer.
|
43 |
+
|
44 |
+
## Model Details
|
45 |
+
|
46 |
+
### Model Description
|
47 |
+
- **Model Type:** SetFit
|
48 |
+
- **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain)
|
49 |
+
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
|
50 |
+
- **Maximum Sequence Length:** 512 tokens
|
51 |
+
- **Number of Classes:** 11 classes
|
52 |
+
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
|
53 |
+
<!-- - **Language:** Unknown -->
|
54 |
+
<!-- - **License:** Unknown -->
|
55 |
+
|
56 |
+
### Model Sources
|
57 |
+
|
58 |
+
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
|
59 |
+
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
|
60 |
+
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
|
61 |
+
|
62 |
+
### Model Labels
|
63 |
+
| Label | Examples |
|
64 |
+
|:------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
65 |
+
| 6.0 | <ul><li>'가히 멀티 밤 리필형 9g x 1개(본품) + 9g x 3개(리필) 옵션없음 주식회사 제이제이몰'</li><li>'김정문알로에 큐어플러스 인텐시브 2x 크림 50g 3개 옵션없음 리틀리아'</li><li>'Good Molecules 젠틀 레티놀 크림 레티놀과 바쿠치올이 함유된 나이트 과색소 침 옵션없음 비포유'</li></ul> |
|
66 |
+
| 1.0 | <ul><li>'크리니크 드라마티컬리 디퍼런트 모이스처라이징 젤 125ml(건성, 중복합) 옵션없음 옐로우로켓'</li><li>'크리니크 드라마티컬리 디퍼런트 모이스처라이징 젤 125ml(건성, 중복합성) 옵션없음 샹양무역 유한회사'</li><li>'[케이스훼손] 더 후 공진향 인양 로션 110ml (케이스훼손) 인양 로션. 주식회사 포러스'</li></ul> |
|
67 |
+
| 10.0 | <ul><li>'한율 송담 탄력 기초 2종 세트 (스킨+에멀젼) 기초 스킨 로션 여성 부모님화장품 스킨+에멀젼+아이크림+크림 홈뷰티샵'</li><li>'오휘 더 퍼스트 제너츄어 3종 스페셜 세트 옵션없음 브라우니박스2'</li><li>'쟝블랑 그린티 밸런싱 여성 3종세트 옵션없음 아 이리스'</li></ul> |
|
68 |
+
| 7.0 | <ul><li>'[SKINFOOD] 캐롯 카로틴 카밍 워터패드 30매 (NEW 집게+패드케이스 ) 당근 (주)더블유컨셉코리아'</li><li>'메디힐 티트리 트러블 패드 100매 + 리필 100매 옵션없음 미뇨네'</li><li>'프리업 원더 포어 클리어 패드 휴대용 키트 10개입 옵션없음 주식회사 브랜드커머스'</li></ul> |
|
69 |
+
| 4.0 | <ul><li>'에뛰드 모이스트풀 콜라겐 아이 크림 28ml Moistfull Collagen Eye Cream 옵션없음 월드세븐'</li><li>'마티나겝하르트 아보카도 아이크림 15ml 옵션없음 포비티엘'</li><li>'가히 아이밤 옵션없음 남영오'</li></ul> |
|
70 |
+
| 9.0 | <ul><li>'안나홀츠 호호바오일 에코서트인증 유기농 압착 비정제 천연 호호바오일 60ml 2병 옵션���음 (주)안나홀츠'</li><li>'스킨아이 유기농 티트리 오일 옵션없음 폴슨 주식회사(FOLSN Inc.)'</li><li>'[3개세트] 유기농 티트리 오일 10ml 옵션없음 주식회사 보나쥬르'</li></ul> |
|
71 |
+
| 0.0 | <ul><li>'멀티밤스틱 주름지우개 보툴레닌 기가스틱 넥스젠바이오'</li><li>'벨라수 데콜테 넥크림 50ml 벨라수'</li><li>'종근당 CKD 레티노 콜라겐 저분자 300 괄사 목주름 크림 50ml 동의함 일랑팩토리'</li></ul> |
|
72 |
+
| 8.0 | <ul><li>'AHC 누드톤업크림 내추럴글로우 40ml 옵션없음 가온'</li><li>'AHC 아우라 시크릿 톤업크림 50g 옵션없음 마리공주'</li><li>'AHC 톤업크림 아우라 시크릿 50g 옵션없음 쇼핑사거리'</li></ul> |
|
73 |
+
| 2.0 | <ul><li>'자트인사이트 울트라 셋팅 진짜 픽서 50ml 2개 옵션없음 솔마켓'</li><li>'ECLADO (1+1) NK-CX 프로틴 포텐 부스터 100ml 뿌리는 단백질 [1+1]NK-CX 포텐부스터 하이그래'</li><li>'CNP 차앤박 프로폴리스 에너지 앰플 미스트 250ml 1개 옵션없음 주식회사 아이지비'</li></ul> |
|
74 |
+
| 3.0 | <ul><li>'네이처리퍼블릭 리얼 스퀴즈 알로에 베라 토너 150ml(신형) 옵션없음 마켓유'</li><li>'허브 솔루션 위치하젤 토너 500ml / 1개 허브 솔루션 알로에 베라 토너 500ml 듀얼샵'</li><li>'르네셀 멀티 펩타이드 토너(재고정리) 옵션없음 숙이네 잡화'</li></ul> |
|
75 |
+
| 5.0 | <ul><li>'브링그린 알로에 99% 수딩 젤 300ml(민감성)/JL 옵션없음 주식회사 제이엘'</li><li>'브링그린 알로에 99% 수딩젤 300ml 옵션없음 모현'</li><li>'350211 포어 슈링커 바쿠치올 세럼 50ml 옵션없음 제이에프무역'</li></ul> |
|
76 |
+
|
77 |
+
## Evaluation
|
78 |
+
|
79 |
+
### Metrics
|
80 |
+
| Label | Accuracy |
|
81 |
+
|:--------|:---------|
|
82 |
+
| **all** | 0.8216 |
|
83 |
+
|
84 |
+
## Uses
|
85 |
+
|
86 |
+
### Direct Use for Inference
|
87 |
+
|
88 |
+
First install the SetFit library:
|
89 |
+
|
90 |
+
```bash
|
91 |
+
pip install setfit
|
92 |
+
```
|
93 |
+
|
94 |
+
Then you can load this model and run inference.
|
95 |
+
|
96 |
+
```python
|
97 |
+
from setfit import SetFitModel
|
98 |
+
|
99 |
+
# Download from the 🤗 Hub
|
100 |
+
model = SetFitModel.from_pretrained("mini1013/master_cate_bt8_test")
|
101 |
+
# Run inference
|
102 |
+
preds = model("라벤더 일회용 여성로션 3ML 옵션없음 동양유통")
|
103 |
+
```
|
104 |
+
|
105 |
+
<!--
|
106 |
+
### Downstream Use
|
107 |
+
|
108 |
+
*List how someone could finetune this model on their own dataset.*
|
109 |
+
-->
|
110 |
+
|
111 |
+
<!--
|
112 |
+
### Out-of-Scope Use
|
113 |
+
|
114 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
115 |
+
-->
|
116 |
+
|
117 |
+
<!--
|
118 |
+
## Bias, Risks and Limitations
|
119 |
+
|
120 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
121 |
+
-->
|
122 |
+
|
123 |
+
<!--
|
124 |
+
### Recommendations
|
125 |
+
|
126 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
127 |
+
-->
|
128 |
+
|
129 |
+
## Training Details
|
130 |
+
|
131 |
+
### Training Set Metrics
|
132 |
+
| Training set | Min | Median | Max |
|
133 |
+
|:-------------|:----|:-------|:----|
|
134 |
+
| Word count | 4 | 9.2179 | 23 |
|
135 |
+
|
136 |
+
| Label | Training Sample Count |
|
137 |
+
|:------|:----------------------|
|
138 |
+
| 0.0 | 18 |
|
139 |
+
| 1.0 | 18 |
|
140 |
+
| 2.0 | 22 |
|
141 |
+
| 3.0 | 20 |
|
142 |
+
| 4.0 | 32 |
|
143 |
+
| 5.0 | 30 |
|
144 |
+
| 6.0 | 40 |
|
145 |
+
| 7.0 | 23 |
|
146 |
+
| 8.0 | 17 |
|
147 |
+
| 9.0 | 14 |
|
148 |
+
| 10.0 | 23 |
|
149 |
+
|
150 |
+
### Training Hyperparameters
|
151 |
+
- batch_size: (512, 512)
|
152 |
+
- num_epochs: (40, 40)
|
153 |
+
- max_steps: -1
|
154 |
+
- sampling_strategy: oversampling
|
155 |
+
- num_iterations: 50
|
156 |
+
- body_learning_rate: (2e-05, 1e-05)
|
157 |
+
- head_learning_rate: 0.01
|
158 |
+
- loss: CosineSimilarityLoss
|
159 |
+
- distance_metric: cosine_distance
|
160 |
+
- margin: 0.25
|
161 |
+
- end_to_end: False
|
162 |
+
- use_amp: False
|
163 |
+
- warmup_proportion: 0.1
|
164 |
+
- l2_weight: 0.01
|
165 |
+
- seed: 42
|
166 |
+
- eval_max_steps: -1
|
167 |
+
- load_best_model_at_end: False
|
168 |
+
|
169 |
+
### Training Results
|
170 |
+
| Epoch | Step | Training Loss | Validation Loss |
|
171 |
+
|:-------:|:----:|:-------------:|:---------------:|
|
172 |
+
| 0.0385 | 1 | 0.4822 | - |
|
173 |
+
| 1.9231 | 50 | 0.3286 | - |
|
174 |
+
| 3.8462 | 100 | 0.0503 | - |
|
175 |
+
| 5.7692 | 150 | 0.028 | - |
|
176 |
+
| 7.6923 | 200 | 0.0213 | - |
|
177 |
+
| 9.6154 | 250 | 0.0084 | - |
|
178 |
+
| 11.5385 | 300 | 0.0002 | - |
|
179 |
+
| 13.4615 | 350 | 0.0001 | - |
|
180 |
+
| 15.3846 | 400 | 0.0001 | - |
|
181 |
+
| 17.3077 | 450 | 0.0001 | - |
|
182 |
+
| 19.2308 | 500 | 0.0001 | - |
|
183 |
+
| 21.1538 | 550 | 0.0001 | - |
|
184 |
+
| 23.0769 | 600 | 0.0001 | - |
|
185 |
+
| 25.0 | 650 | 0.0001 | - |
|
186 |
+
| 26.9231 | 700 | 0.0 | - |
|
187 |
+
| 28.8462 | 750 | 0.0 | - |
|
188 |
+
| 30.7692 | 800 | 0.0 | - |
|
189 |
+
| 32.6923 | 850 | 0.0 | - |
|
190 |
+
| 34.6154 | 900 | 0.0 | - |
|
191 |
+
| 36.5385 | 950 | 0.0 | - |
|
192 |
+
| 38.4615 | 1000 | 0.0 | - |
|
193 |
+
|
194 |
+
### Framework Versions
|
195 |
+
- Python: 3.10.12
|
196 |
+
- SetFit: 1.1.0
|
197 |
+
- Sentence Transformers: 3.3.1
|
198 |
+
- Transformers: 4.44.2
|
199 |
+
- PyTorch: 2.2.0a0+81ea7a4
|
200 |
+
- Datasets: 3.2.0
|
201 |
+
- Tokenizers: 0.19.1
|
202 |
+
|
203 |
+
## Citation
|
204 |
+
|
205 |
+
### BibTeX
|
206 |
+
```bibtex
|
207 |
+
@article{https://doi.org/10.48550/arxiv.2209.11055,
|
208 |
+
doi = {10.48550/ARXIV.2209.11055},
|
209 |
+
url = {https://arxiv.org/abs/2209.11055},
|
210 |
+
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
|
211 |
+
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
212 |
+
title = {Efficient Few-Shot Learning Without Prompts},
|
213 |
+
publisher = {arXiv},
|
214 |
+
year = {2022},
|
215 |
+
copyright = {Creative Commons Attribution 4.0 International}
|
216 |
+
}
|
217 |
+
```
|
218 |
+
|
219 |
+
<!--
|
220 |
+
## Glossary
|
221 |
+
|
222 |
+
*Clearly define terms in order to be accessible across audiences.*
|
223 |
+
-->
|
224 |
+
|
225 |
+
<!--
|
226 |
+
## Model Card Authors
|
227 |
+
|
228 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
229 |
+
-->
|
230 |
+
|
231 |
+
<!--
|
232 |
+
## Model Card Contact
|
233 |
+
|
234 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
235 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "mini1013/master_item_bt_test",
|
3 |
+
"architectures": [
|
4 |
+
"RobertaModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"bos_token_id": 0,
|
8 |
+
"classifier_dropout": null,
|
9 |
+
"eos_token_id": 2,
|
10 |
+
"gradient_checkpointing": false,
|
11 |
+
"hidden_act": "gelu",
|
12 |
+
"hidden_dropout_prob": 0.1,
|
13 |
+
"hidden_size": 768,
|
14 |
+
"initializer_range": 0.02,
|
15 |
+
"intermediate_size": 3072,
|
16 |
+
"layer_norm_eps": 1e-05,
|
17 |
+
"max_position_embeddings": 514,
|
18 |
+
"model_type": "roberta",
|
19 |
+
"num_attention_heads": 12,
|
20 |
+
"num_hidden_layers": 12,
|
21 |
+
"pad_token_id": 1,
|
22 |
+
"position_embedding_type": "absolute",
|
23 |
+
"tokenizer_class": "BertTokenizer",
|
24 |
+
"torch_dtype": "float32",
|
25 |
+
"transformers_version": "4.44.2",
|
26 |
+
"type_vocab_size": 1,
|
27 |
+
"use_cache": true,
|
28 |
+
"vocab_size": 32000
|
29 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.3.1",
|
4 |
+
"transformers": "4.44.2",
|
5 |
+
"pytorch": "2.2.0a0+81ea7a4"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": "cosine"
|
10 |
+
}
|
config_setfit.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"labels": null,
|
3 |
+
"normalize_embeddings": false
|
4 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8110a7c420ae7917f1b0bb50097a0cdb5eded2d580344aebf863e4f158062d1f
|
3 |
+
size 442494816
|
model_head.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d575e24a235e5ea2dbff875ab2b198312f2076eedb67f22a963c0cbb8010191e
|
3 |
+
size 68575
|
modules.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
}
|
14 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 512,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "[CLS]",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"cls_token": {
|
10 |
+
"content": "[CLS]",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"eos_token": {
|
17 |
+
"content": "[SEP]",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"mask_token": {
|
24 |
+
"content": "[MASK]",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"pad_token": {
|
31 |
+
"content": "[PAD]",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
},
|
37 |
+
"sep_token": {
|
38 |
+
"content": "[SEP]",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false
|
43 |
+
},
|
44 |
+
"unk_token": {
|
45 |
+
"content": "[UNK]",
|
46 |
+
"lstrip": false,
|
47 |
+
"normalized": false,
|
48 |
+
"rstrip": false,
|
49 |
+
"single_word": false
|
50 |
+
}
|
51 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[CLS]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "[PAD]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "[SEP]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"3": {
|
28 |
+
"content": "[UNK]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"4": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"bos_token": "[CLS]",
|
45 |
+
"clean_up_tokenization_spaces": false,
|
46 |
+
"cls_token": "[CLS]",
|
47 |
+
"do_basic_tokenize": true,
|
48 |
+
"do_lower_case": false,
|
49 |
+
"eos_token": "[SEP]",
|
50 |
+
"mask_token": "[MASK]",
|
51 |
+
"max_length": 512,
|
52 |
+
"model_max_length": 512,
|
53 |
+
"never_split": null,
|
54 |
+
"pad_to_multiple_of": null,
|
55 |
+
"pad_token": "[PAD]",
|
56 |
+
"pad_token_type_id": 0,
|
57 |
+
"padding_side": "right",
|
58 |
+
"sep_token": "[SEP]",
|
59 |
+
"stride": 0,
|
60 |
+
"strip_accents": null,
|
61 |
+
"tokenize_chinese_chars": true,
|
62 |
+
"tokenizer_class": "BertTokenizer",
|
63 |
+
"truncation_side": "right",
|
64 |
+
"truncation_strategy": "longest_first",
|
65 |
+
"unk_token": "[UNK]"
|
66 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|