mini1013 commited on
Commit
c24a629
·
verified ·
1 Parent(s): 4e152c1

Push model using huggingface_hub.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,219 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: mini1013/master_domain
3
+ library_name: setfit
4
+ metrics:
5
+ - accuracy
6
+ pipeline_tag: text-classification
7
+ tags:
8
+ - setfit
9
+ - sentence-transformers
10
+ - text-classification
11
+ - generated_from_setfit_trainer
12
+ widget:
13
+ - text: ULG 미용가위 스테인리스 셀프 헤어 앞머리 숱 전문가용 280870 Gold 아스가르드4
14
+ - text: 마사지 안마 흡착 허리 어깨 목 실리콘 U자형 옵션없음 고르다몰
15
+ - text: 관리 눈썹면도기 면도 미용 니켄 일자형 눈썹칼 옵션없음 프렌드리빙
16
+ - text: 샤이세이프 눈썹 면도기3P 3813 칼 미용칼 접이식 정리 휴대용 옵션없음 모든다팜
17
+ - text: 롤온공병 50ml 화장품 휴대용 여행용 소분 케이스 옵션없음 쇼핑하우스
18
+ inference: true
19
+ model-index:
20
+ - name: SetFit with mini1013/master_domain
21
+ results:
22
+ - task:
23
+ type: text-classification
24
+ name: Text Classification
25
+ dataset:
26
+ name: Unknown
27
+ type: unknown
28
+ split: test
29
+ metrics:
30
+ - type: accuracy
31
+ value: 0.6862416107382551
32
+ name: Accuracy
33
+ ---
34
+
35
+ # SetFit with mini1013/master_domain
36
+
37
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
38
+
39
+ The model has been trained using an efficient few-shot learning technique that involves:
40
+
41
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
42
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
43
+
44
+ ## Model Details
45
+
46
+ ### Model Description
47
+ - **Model Type:** SetFit
48
+ - **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain)
49
+ - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
50
+ - **Maximum Sequence Length:** 512 tokens
51
+ - **Number of Classes:** 8 classes
52
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
53
+ <!-- - **Language:** Unknown -->
54
+ <!-- - **License:** Unknown -->
55
+
56
+ ### Model Sources
57
+
58
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
59
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
60
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
61
+
62
+ ### Model Labels
63
+ | Label | Examples |
64
+ |:------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
65
+ | 2.0 | <ul><li>'실리콘 섹시 패치 여성 가리개 니플 밴드 패드 유두 남성 상품선택_플라워 오네몰'</li><li>'왁싱 스트립 부직포 페이퍼 제포 무슬린천 컷팅형 100매 옵션없음 리얼뷰티'</li><li>'남성 매너 여성 가리개 밴드 패치 가슴 살색 꼭지 원형(2P) 삼티아고'</li></ul> |
66
+ | 0.0 | <ul><li>'더림 유기농 율무 추출물 150ml 150ml 아이앤비 바이오랩'</li><li>'카페인 커피 샴푸바만들기 교육용 수제비누 키트 DIY 자원순환 업사이클링 옵션없음 처음(CHOEUM)'</li><li>'솔루빌라이저 1 리터 옵션없음 주식회사 월터엔터프라이즈'</li></ul> |
67
+ | 6.0 | <ul><li>'고양이귀 세안 헤어밴드 5p세트 KD-8679 목욕용 세면 샤워용 극세사 옵션없음 초이스리테일 5'</li><li>'루시피 클립 위빙콤(색상랜덤) + 파마 실리콘 밴드(20개입) 옵션없음 가리유통'</li><li>'액세서리 사우나헤어캡 자동차 95760 A7CC1 B4 뷰 카메라 기아 세라토 백업 Dark Grey 셀로스중랑'</li></ul> |
68
+ | 5.0 | <ul><li>'NEW갸름마스크턱볼살용 얼굴 마스크 턱볼살 TYPE 2 옵션없음 포켐폼'</li><li>'도자기 괄사(마사지도구)-바다수영냥 스퀘어 옵션없음 루아링'</li><li>'에이브 면분첩 - 중형 옵션없음 하민하이'</li></ul> |
69
+ | 7.0 | <ul><li>'물방울 퍼퓸 20ml 향수 용기 공병 니치 향수병 스프레이 스크류타입 퍼퓸 32.디지오 투명 50ml-1개 주식회사 강군'</li><li>'미니 까멜리아 공병 용기 휴대용 키링 립밤 케이스 옵션없음 코뿔소앵글'</li><li>'산리오 캐릭터 휴대용 스프레이 공병 시나모롤 쿠로미 포차코 헬로키티 이루리잡화점'</li></ul> |
70
+ | 3.0 | <ul><li>'눈썹정리칼 눈썹 트리��� 세트 스틸 클립 빗 가위 3개 3PC 벤자민 잡화점'</li><li>'접이식 눈썹 면도기 눈썹칼 눈썹정리 xuG DFP 잘드는 기본 GGH 옵션없음 리치오토'</li><li>'쪽집게 전문 스테인리스 스틸 고품질 보석 족집게, DIY 다이아몬드 주얼리 제작 도구 02 elbow 마이나인쓰'</li></ul> |
71
+ | 4.0 | <ul><li>'2주지속 리얼 문신 팔손가락 타투스티커 티안나는 반영구 방수 헤나 문신 나비 세트 A6 ( 2장세트 ) 에테르넬'</li><li>'산리오 쁘띠 타투 스티커 캐릭터 09 핑크 프렌즈 옵션없음 보라나마루'</li><li>'타투스티커 타투 휴가 나비타투 5종 A형 B형 컬러 나비 꽃 A형(5장) 태흥정밀'</li></ul> |
72
+ | 1.0 | <ul><li>'브러쉬세트 눈썹 1/2/3Pcs 윤곽 브러시 각도 얇은 플랫 라이너 휴대용 전문 눈 2pcs Set 리마104'</li><li>'아이브로우브러쉬 8pcs Cardcaptor 세트 파운데이션 섀도우 브로우 Pincel 8pcs_CHINA 드림비정선'</li><li>'실버 고급립솔 립붓 옵션없음 엠디와이'</li></ul> |
73
+
74
+ ## Evaluation
75
+
76
+ ### Metrics
77
+ | Label | Accuracy |
78
+ |:--------|:---------|
79
+ | **all** | 0.6862 |
80
+
81
+ ## Uses
82
+
83
+ ### Direct Use for Inference
84
+
85
+ First install the SetFit library:
86
+
87
+ ```bash
88
+ pip install setfit
89
+ ```
90
+
91
+ Then you can load this model and run inference.
92
+
93
+ ```python
94
+ from setfit import SetFitModel
95
+
96
+ # Download from the 🤗 Hub
97
+ model = SetFitModel.from_pretrained("mini1013/master_cate_bt5_test")
98
+ # Run inference
99
+ preds = model("마사지 안마 흡착 허리 어깨 목 실리콘 U자형 옵션없음 고르다몰")
100
+ ```
101
+
102
+ <!--
103
+ ### Downstream Use
104
+
105
+ *List how someone could finetune this model on their own dataset.*
106
+ -->
107
+
108
+ <!--
109
+ ### Out-of-Scope Use
110
+
111
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
112
+ -->
113
+
114
+ <!--
115
+ ## Bias, Risks and Limitations
116
+
117
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
118
+ -->
119
+
120
+ <!--
121
+ ### Recommendations
122
+
123
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
124
+ -->
125
+
126
+ ## Training Details
127
+
128
+ ### Training Set Metrics
129
+ | Training set | Min | Median | Max |
130
+ |:-------------|:----|:--------|:----|
131
+ | Word count | 3 | 10.0538 | 20 |
132
+
133
+ | Label | Training Sample Count |
134
+ |:------|:----------------------|
135
+ | 0.0 | 12 |
136
+ | 1.0 | 12 |
137
+ | 2.0 | 12 |
138
+ | 3.0 | 19 |
139
+ | 4.0 | 20 |
140
+ | 5.0 | 27 |
141
+ | 6.0 | 13 |
142
+ | 7.0 | 15 |
143
+
144
+ ### Training Hyperparameters
145
+ - batch_size: (512, 512)
146
+ - num_epochs: (40, 40)
147
+ - max_steps: -1
148
+ - sampling_strategy: oversampling
149
+ - num_iterations: 50
150
+ - body_learning_rate: (2e-05, 1e-05)
151
+ - head_learning_rate: 0.01
152
+ - loss: CosineSimilarityLoss
153
+ - distance_metric: cosine_distance
154
+ - margin: 0.25
155
+ - end_to_end: False
156
+ - use_amp: False
157
+ - warmup_proportion: 0.1
158
+ - l2_weight: 0.01
159
+ - seed: 42
160
+ - eval_max_steps: -1
161
+ - load_best_model_at_end: False
162
+
163
+ ### Training Results
164
+ | Epoch | Step | Training Loss | Validation Loss |
165
+ |:-------:|:----:|:-------------:|:---------------:|
166
+ | 0.0769 | 1 | 0.4878 | - |
167
+ | 3.8462 | 50 | 0.236 | - |
168
+ | 7.6923 | 100 | 0.0277 | - |
169
+ | 11.5385 | 150 | 0.0102 | - |
170
+ | 15.3846 | 200 | 0.0003 | - |
171
+ | 19.2308 | 250 | 0.0001 | - |
172
+ | 23.0769 | 300 | 0.0001 | - |
173
+ | 26.9231 | 350 | 0.0001 | - |
174
+ | 30.7692 | 400 | 0.0001 | - |
175
+ | 34.6154 | 450 | 0.0001 | - |
176
+ | 38.4615 | 500 | 0.0001 | - |
177
+
178
+ ### Framework Versions
179
+ - Python: 3.10.12
180
+ - SetFit: 1.1.0
181
+ - Sentence Transformers: 3.3.1
182
+ - Transformers: 4.44.2
183
+ - PyTorch: 2.2.0a0+81ea7a4
184
+ - Datasets: 3.2.0
185
+ - Tokenizers: 0.19.1
186
+
187
+ ## Citation
188
+
189
+ ### BibTeX
190
+ ```bibtex
191
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
192
+ doi = {10.48550/ARXIV.2209.11055},
193
+ url = {https://arxiv.org/abs/2209.11055},
194
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
195
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
196
+ title = {Efficient Few-Shot Learning Without Prompts},
197
+ publisher = {arXiv},
198
+ year = {2022},
199
+ copyright = {Creative Commons Attribution 4.0 International}
200
+ }
201
+ ```
202
+
203
+ <!--
204
+ ## Glossary
205
+
206
+ *Clearly define terms in order to be accessible across audiences.*
207
+ -->
208
+
209
+ <!--
210
+ ## Model Card Authors
211
+
212
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
213
+ -->
214
+
215
+ <!--
216
+ ## Model Card Contact
217
+
218
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
219
+ -->
config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "mini1013/master_item_bt_test",
3
+ "architectures": [
4
+ "RobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "gradient_checkpointing": false,
11
+ "hidden_act": "gelu",
12
+ "hidden_dropout_prob": 0.1,
13
+ "hidden_size": 768,
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 3072,
16
+ "layer_norm_eps": 1e-05,
17
+ "max_position_embeddings": 514,
18
+ "model_type": "roberta",
19
+ "num_attention_heads": 12,
20
+ "num_hidden_layers": 12,
21
+ "pad_token_id": 1,
22
+ "position_embedding_type": "absolute",
23
+ "tokenizer_class": "BertTokenizer",
24
+ "torch_dtype": "float32",
25
+ "transformers_version": "4.44.2",
26
+ "type_vocab_size": 1,
27
+ "use_cache": true,
28
+ "vocab_size": 32000
29
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.3.1",
4
+ "transformers": "4.44.2",
5
+ "pytorch": "2.2.0a0+81ea7a4"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
config_setfit.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "labels": null,
3
+ "normalize_embeddings": false
4
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e477bed6323fea47c033d60a30d5a459bda9b994ec9767f90db690dbbf9e787a
3
+ size 442494816
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b4083b259a9fc8234c1d1d5e3dc2af9f98cbfc0e5e71a00219748b439c6c3076
3
+ size 50087
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "[CLS]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "[SEP]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "[MASK]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "[PAD]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "[SEP]",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[CLS]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "[PAD]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "[SEP]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "[UNK]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "4": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "[CLS]",
45
+ "clean_up_tokenization_spaces": false,
46
+ "cls_token": "[CLS]",
47
+ "do_basic_tokenize": true,
48
+ "do_lower_case": false,
49
+ "eos_token": "[SEP]",
50
+ "mask_token": "[MASK]",
51
+ "max_length": 512,
52
+ "model_max_length": 512,
53
+ "never_split": null,
54
+ "pad_to_multiple_of": null,
55
+ "pad_token": "[PAD]",
56
+ "pad_token_type_id": 0,
57
+ "padding_side": "right",
58
+ "sep_token": "[SEP]",
59
+ "stride": 0,
60
+ "strip_accents": null,
61
+ "tokenize_chinese_chars": true,
62
+ "tokenizer_class": "BertTokenizer",
63
+ "truncation_side": "right",
64
+ "truncation_strategy": "longest_first",
65
+ "unk_token": "[UNK]"
66
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff