--- base_model: mini1013/master_domain library_name: setfit metrics: - accuracy pipeline_tag: text-classification tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer widget: - text: 오너클랜 블랙헤드 클리닝 24개입 코팩 스킨애 대용량 참숯 옵션없음 모던벙커 - text: 히든올가 히아루론산 마스크 400g 옵션없음 판타시아 - text: '[셀러허브 1]프롬더스킨 글루타치온 콜라겐 팩 50g 1개 RS 기본 에스케이스토아주식회사' - text: 볼라욘 스피넴 파우더500g(모델링 마스크)+샘플+팩도구세트 옵션없음 수애 - text: 피부관리실/피부 미용 실기 비타민 열석고 1kg 황토 석고 700g 주식회사 엔에프코리아 inference: true model-index: - name: SetFit with mini1013/master_domain results: - task: type: text-classification name: Text Classification dataset: name: Unknown type: unknown split: test metrics: - type: accuracy value: 0.6112115732368897 name: Accuracy --- # SetFit with mini1013/master_domain This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 512 tokens - **Number of Classes:** 8 classes ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 1.0 | | | 6.0 | | | 5.0 | | | 4.0 | | | 7.0 | | | 2.0 | | | 3.0 | | | 0.0 | | ## Evaluation ### Metrics | Label | Accuracy | |:--------|:---------| | **all** | 0.6112 | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the 🤗 Hub model = SetFitModel.from_pretrained("mini1013/master_cate_bt2_test") # Run inference preds = model("히든올가 히아루론산 마스크 400g 옵션없음 판타시아") ``` ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:-------|:----| | Word count | 3 | 9.7453 | 23 | | Label | Training Sample Count | |:------|:----------------------| | 0.0 | 16 | | 1.0 | 10 | | 2.0 | 42 | | 3.0 | 21 | | 4.0 | 20 | | 5.0 | 19 | | 6.0 | 15 | | 7.0 | 18 | ### Training Hyperparameters - batch_size: (512, 512) - num_epochs: (50, 50) - max_steps: -1 - sampling_strategy: oversampling - num_iterations: 60 - body_learning_rate: (2e-05, 1e-05) - head_learning_rate: 0.01 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - l2_weight: 0.01 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: False ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:-------:|:----:|:-------------:|:---------------:| | 0.0526 | 1 | 0.4875 | - | | 2.6316 | 50 | 0.3322 | - | | 5.2632 | 100 | 0.0442 | - | | 7.8947 | 150 | 0.0025 | - | | 10.5263 | 200 | 0.0002 | - | | 13.1579 | 250 | 0.0001 | - | | 15.7895 | 300 | 0.0001 | - | | 18.4211 | 350 | 0.0001 | - | | 21.0526 | 400 | 0.0001 | - | | 23.6842 | 450 | 0.0001 | - | | 26.3158 | 500 | 0.0001 | - | | 28.9474 | 550 | 0.0001 | - | | 31.5789 | 600 | 0.0001 | - | | 34.2105 | 650 | 0.0001 | - | | 36.8421 | 700 | 0.0001 | - | | 39.4737 | 750 | 0.0001 | - | | 42.1053 | 800 | 0.0001 | - | | 44.7368 | 850 | 0.0001 | - | | 47.3684 | 900 | 0.0001 | - | | 50.0 | 950 | 0.0 | - | ### Framework Versions - Python: 3.10.12 - SetFit: 1.1.0 - Sentence Transformers: 3.3.1 - Transformers: 4.44.2 - PyTorch: 2.2.0a0+81ea7a4 - Datasets: 3.2.0 - Tokenizers: 0.19.1 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```