mini1013 commited on
Commit
7318c2b
·
verified ·
1 Parent(s): 2676a98

Push model using huggingface_hub.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,239 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: mini1013/setfit_robeta_base_s_domain
3
+ library_name: setfit
4
+ metrics:
5
+ - metric
6
+ pipeline_tag: text-classification
7
+ tags:
8
+ - setfit
9
+ - sentence-transformers
10
+ - text-classification
11
+ - generated_from_setfit_trainer
12
+ widget:
13
+ - text: '[7매입/14매입] 마이크로바이옴 비건 모델링팩 모공 수축 수분 진정 마스크 팩 1set 1. 모델링팩 1set (7매입) 주식회사
14
+ 에이치티오인터내셔널'
15
+ - text: 더후 공진향 인양 넥앤페이스 탄력 리페어75ml 옵션없음 씨플랩
16
+ - text: 빌리프 슈퍼 나이츠-리제너레이팅 나이트 마스크 75ml 옵션없음 라임쇼핑
17
+ - text: 수이스킨 편안한 진정초 시트 마스크 5개입 × 1개 민물유통
18
+ - text: 참존 지안 극결 콘트롤 크림 225ml (리뉴얼제품) 옵션없음 슈슈
19
+ inference: true
20
+ model-index:
21
+ - name: SetFit with mini1013/setfit_robeta_base_s_domain
22
+ results:
23
+ - task:
24
+ type: text-classification
25
+ name: Text Classification
26
+ dataset:
27
+ name: Unknown
28
+ type: unknown
29
+ split: test
30
+ metrics:
31
+ - type: metric
32
+ value: 0.7714285714285715
33
+ name: Metric
34
+ ---
35
+
36
+ # SetFit with mini1013/setfit_robeta_base_s_domain
37
+
38
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/setfit_robeta_base_s_domain](https://huggingface.co/mini1013/setfit_robeta_base_s_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
39
+
40
+ The model has been trained using an efficient few-shot learning technique that involves:
41
+
42
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
43
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
44
+
45
+ ## Model Details
46
+
47
+ ### Model Description
48
+ - **Model Type:** SetFit
49
+ - **Sentence Transformer body:** [mini1013/setfit_robeta_base_s_domain](https://huggingface.co/mini1013/setfit_robeta_base_s_domain)
50
+ - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
51
+ - **Maximum Sequence Length:** 512 tokens
52
+ - **Number of Classes:** 8 classes
53
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
54
+ <!-- - **Language:** Unknown -->
55
+ <!-- - **License:** Unknown -->
56
+
57
+ ### Model Sources
58
+
59
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
60
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
61
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
62
+
63
+ ### Model Labels
64
+ | Label | Examples |
65
+ |:------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
66
+ | 4 | <ul><li>'메노킨 30초 퀵 버블 마스크 3종세트 (선물포장+세안밴드 ) 옵션없음 주식회사 포레스트에비뉴'</li><li>'라네즈 립 슬리핑 마스크EX 20g 각질케어 수면팩 자몽 20g (주)아모레퍼시픽'</li><li>'빌리프 슈퍼 나이츠 멀티 비타민 마스크 75ml 옵션없음 라임쇼핑'</li></ul> |
67
+ | 5 | <ul><li>'[러쉬]국내제조 컵 오 커피 325g - 페이스 마스크 / 커피팩 옵션없음 주식회사 러쉬코리아'</li><li>'올리고더미 딥클렌징 마스크 110ml+25ml+캐릭터파우치+스파츌라 리바이탈라이징 25ml(5mlx5매) [영양] 주식회사더마셀'</li><li>'스킨푸드 라벤더 푸드마스크 120g 02 딸기슈가_1개 미루코스메틱'</li></ul> |
68
+ | 3 | <ul><li>'[에스테프로] 708 티트리 알게러버 2000ml 고무마스크 모델링팩 피부미용사 실기준비물 에스테맥스 옵션없음 무제'</li><li>'린제이 프리미엄 쿨 티트리 모델링 마스크 고무팩 820g 11203606 옵션없음 세론세론'</li><li>'메디플라워 대용량 네이처 허브 모델링팩 쿨티트리 500g+히알루론산 멀티 부스터 500ml 쿨 티트리 500g_히알루론산 멀티 부스터 (주)메디플라워'</li></ul> |
69
+ | 2 | <ul><li>'바이오던스 바이오 콜라겐 리얼 딥 마스크 1매 옵션없음 에스제이유통'</li><li>'아리얼 세븐데이즈 마스크 카렌듈라 P 1매 도매가능 옵션없음 앱스'</li><li>'바노바기 밀크 씨슬 리페어 시카 퀵 마스크 플러스(30매) 제품 구매 시 +시카 폼 미니어처 1EA 증정 주식회사 바노바기'</li></ul> |
70
+ | 6 | <ul><li>'포잇 카카두 허니씨 톤업패드 60매 3개 옵션없음 스타일리시케이'</li><li>'미팩토리 3단 돼지 코팩, 3개입, 6개 3개입 × 6개 제이케이컴퍼니'</li><li>'올가드 아웃도어 패치 2패치 4매 3개 옵션없음 스타일리시케이'</li></ul> |
71
+ | 0 | <ul><li>'오릭스마사지크림(450ml) 옵션없음 고호성'</li><li>'모든순간 살구씨 찌든때 비타민 피지 살구스크럽 500g 옵션없음 데이포유'</li><li>'필로티카 시트랑스 겔 마스크 270ml 필로티카 시트랑스 겔 마스크 270ml 오드엘르'</li></ul> |
72
+ | 1 | <ul><li>'코 숨쉬기 입벌림 방지 호흡 유도 수면 보조 밴드 코골이 기구 용품 개선 제품 완화 기기 옵션없음 구씨네유통'</li><li>'희재감성 라인정리 이중턱 밴드 관리 리프팅 안면윤곽 단품(1701) 희재감성몰'</li><li>'50 개/몫 화이트 판지 카드 상자 포장 빈 마스크 더블 오픈 01 WHITE_06 9.2x8x5cm-50pcs 글로젠'</li></ul> |
73
+ | 7 | <ul><li>'ECLADO 에끌라두 로얄 밀크 프로틴 페이셜 마스크 70g 단백질 필오프팩 1개 옵션없음 주식회사 아워스'</li><li>'비건이펙트 슬로우 앤 에이징 저분자 콜라겐 물광 랩마스크 80ml 옵션없음 (주)부스트랩'</li><li>'메디필 레드락토 콜라겐 랩핑마스크 70ml 물광 리프팅 팩 옵션없음 웬디스룸'</li></ul> |
74
+
75
+ ## Evaluation
76
+
77
+ ### Metrics
78
+ | Label | Metric |
79
+ |:--------|:-------|
80
+ | **all** | 0.7714 |
81
+
82
+ ## Uses
83
+
84
+ ### Direct Use for Inference
85
+
86
+ First install the SetFit library:
87
+
88
+ ```bash
89
+ pip install setfit
90
+ ```
91
+
92
+ Then you can load this model and run inference.
93
+
94
+ ```python
95
+ from setfit import SetFitModel
96
+
97
+ # Download from the 🤗 Hub
98
+ model = SetFitModel.from_pretrained("mini1013/master_cate_bt2")
99
+ # Run inference
100
+ preds = model("수이스킨 편안한 진정초 시트 마스크 5개입 × 1개 민물유통")
101
+ ```
102
+
103
+ <!--
104
+ ### Downstream Use
105
+
106
+ *List how someone could finetune this model on their own dataset.*
107
+ -->
108
+
109
+ <!--
110
+ ### Out-of-Scope Use
111
+
112
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
113
+ -->
114
+
115
+ <!--
116
+ ## Bias, Risks and Limitations
117
+
118
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
119
+ -->
120
+
121
+ <!--
122
+ ### Recommendations
123
+
124
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
125
+ -->
126
+
127
+ ## Training Details
128
+
129
+ ### Training Set Metrics
130
+ | Training set | Min | Median | Max |
131
+ |:-------------|:----|:-------|:----|
132
+ | Word count | 3 | 9.8591 | 27 |
133
+
134
+ | Label | Training Sample Count |
135
+ |:------|:----------------------|
136
+ | 0 | 90 |
137
+ | 1 | 78 |
138
+ | 2 | 88 |
139
+ | 3 | 95 |
140
+ | 4 | 94 |
141
+ | 5 | 90 |
142
+ | 6 | 84 |
143
+ | 7 | 34 |
144
+
145
+ ### Training Hyperparameters
146
+ - batch_size: (512, 512)
147
+ - num_epochs: (20, 20)
148
+ - max_steps: -1
149
+ - sampling_strategy: oversampling
150
+ - num_iterations: 30
151
+ - body_learning_rate: (2e-05, 2e-05)
152
+ - head_learning_rate: 2e-05
153
+ - loss: CosineSimilarityLoss
154
+ - distance_metric: cosine_distance
155
+ - margin: 0.25
156
+ - end_to_end: False
157
+ - use_amp: False
158
+ - warmup_proportion: 0.1
159
+ - seed: 42
160
+ - eval_max_steps: -1
161
+ - load_best_model_at_end: False
162
+
163
+ ### Training Results
164
+ | Epoch | Step | Training Loss | Validation Loss |
165
+ |:-------:|:----:|:-------------:|:---------------:|
166
+ | 0.0130 | 1 | 0.4922 | - |
167
+ | 0.6494 | 50 | 0.2317 | - |
168
+ | 1.2987 | 100 | 0.0726 | - |
169
+ | 1.9481 | 150 | 0.033 | - |
170
+ | 2.5974 | 200 | 0.0322 | - |
171
+ | 3.2468 | 250 | 0.0056 | - |
172
+ | 3.8961 | 300 | 0.001 | - |
173
+ | 4.5455 | 350 | 0.0003 | - |
174
+ | 5.1948 | 400 | 0.0001 | - |
175
+ | 5.8442 | 450 | 0.0001 | - |
176
+ | 6.4935 | 500 | 0.0001 | - |
177
+ | 7.1429 | 550 | 0.0002 | - |
178
+ | 7.7922 | 600 | 0.0001 | - |
179
+ | 8.4416 | 650 | 0.0001 | - |
180
+ | 9.0909 | 700 | 0.0001 | - |
181
+ | 9.7403 | 750 | 0.0001 | - |
182
+ | 10.3896 | 800 | 0.0006 | - |
183
+ | 11.0390 | 850 | 0.0001 | - |
184
+ | 11.6883 | 900 | 0.0001 | - |
185
+ | 12.3377 | 950 | 0.0001 | - |
186
+ | 12.9870 | 1000 | 0.0 | - |
187
+ | 13.6364 | 1050 | 0.0 | - |
188
+ | 14.2857 | 1100 | 0.0 | - |
189
+ | 14.9351 | 1150 | 0.0 | - |
190
+ | 15.5844 | 1200 | 0.0 | - |
191
+ | 16.2338 | 1250 | 0.0 | - |
192
+ | 16.8831 | 1300 | 0.0 | - |
193
+ | 17.5325 | 1350 | 0.0 | - |
194
+ | 18.1818 | 1400 | 0.0 | - |
195
+ | 18.8312 | 1450 | 0.0 | - |
196
+ | 19.4805 | 1500 | 0.0 | - |
197
+
198
+ ### Framework Versions
199
+ - Python: 3.10.12
200
+ - SetFit: 1.1.0.dev0
201
+ - Sentence Transformers: 3.1.1
202
+ - Transformers: 4.45.1
203
+ - PyTorch: 2.4.0+cu121
204
+ - Datasets: 2.20.0
205
+ - Tokenizers: 0.20.0
206
+
207
+ ## Citation
208
+
209
+ ### BibTeX
210
+ ```bibtex
211
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
212
+ doi = {10.48550/ARXIV.2209.11055},
213
+ url = {https://arxiv.org/abs/2209.11055},
214
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
215
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
216
+ title = {Efficient Few-Shot Learning Without Prompts},
217
+ publisher = {arXiv},
218
+ year = {2022},
219
+ copyright = {Creative Commons Attribution 4.0 International}
220
+ }
221
+ ```
222
+
223
+ <!--
224
+ ## Glossary
225
+
226
+ *Clearly define terms in order to be accessible across audiences.*
227
+ -->
228
+
229
+ <!--
230
+ ## Model Card Authors
231
+
232
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
233
+ -->
234
+
235
+ <!--
236
+ ## Model Card Contact
237
+
238
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
239
+ -->
config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "mini1013/setfit_robeta_base_bt_item",
3
+ "architectures": [
4
+ "RobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "gradient_checkpointing": false,
11
+ "hidden_act": "gelu",
12
+ "hidden_dropout_prob": 0.1,
13
+ "hidden_size": 768,
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 3072,
16
+ "layer_norm_eps": 1e-05,
17
+ "max_position_embeddings": 514,
18
+ "model_type": "roberta",
19
+ "num_attention_heads": 12,
20
+ "num_hidden_layers": 12,
21
+ "pad_token_id": 1,
22
+ "position_embedding_type": "absolute",
23
+ "tokenizer_class": "BertTokenizer",
24
+ "torch_dtype": "float32",
25
+ "transformers_version": "4.45.1",
26
+ "type_vocab_size": 1,
27
+ "use_cache": true,
28
+ "vocab_size": 32000
29
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.1.1",
4
+ "transformers": "4.45.1",
5
+ "pytorch": "2.4.0+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
config_setfit.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "labels": null,
3
+ "normalize_embeddings": false
4
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b2df1d765584937f36ad5033062cbfdddbe8779d5cdd57ffe1871147b84fa399
3
+ size 442494816
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:137dbc936cca9ebf3024e702ff59e072522026629abaced639f3c195362434ef
3
+ size 50119
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "[CLS]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "[SEP]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "[MASK]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "[PAD]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "[SEP]",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[CLS]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "[PAD]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "[SEP]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "[UNK]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "4": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "[CLS]",
45
+ "clean_up_tokenization_spaces": false,
46
+ "cls_token": "[CLS]",
47
+ "do_basic_tokenize": true,
48
+ "do_lower_case": false,
49
+ "eos_token": "[SEP]",
50
+ "mask_token": "[MASK]",
51
+ "max_length": 512,
52
+ "model_max_length": 512,
53
+ "never_split": null,
54
+ "pad_to_multiple_of": null,
55
+ "pad_token": "[PAD]",
56
+ "pad_token_type_id": 0,
57
+ "padding_side": "right",
58
+ "sep_token": "[SEP]",
59
+ "stride": 0,
60
+ "strip_accents": null,
61
+ "tokenize_chinese_chars": true,
62
+ "tokenizer_class": "BertTokenizer",
63
+ "truncation_side": "right",
64
+ "truncation_strategy": "longest_first",
65
+ "unk_token": "[UNK]"
66
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff