Push model using huggingface_hub.
Browse files- 1_Pooling/config.json +10 -0
- README.md +239 -0
- config.json +29 -0
- config_sentence_transformers.json +10 -0
- config_setfit.json +4 -0
- model.safetensors +3 -0
- model_head.pkl +3 -0
- modules.json +14 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +51 -0
- tokenizer.json +0 -0
- tokenizer_config.json +66 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
ADDED
@@ -0,0 +1,239 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: mini1013/setfit_robeta_base_s_domain
|
3 |
+
library_name: setfit
|
4 |
+
metrics:
|
5 |
+
- metric
|
6 |
+
pipeline_tag: text-classification
|
7 |
+
tags:
|
8 |
+
- setfit
|
9 |
+
- sentence-transformers
|
10 |
+
- text-classification
|
11 |
+
- generated_from_setfit_trainer
|
12 |
+
widget:
|
13 |
+
- text: '[7매입/14매입] 마이크로바이옴 비건 모델링팩 모공 수축 수분 진정 마스크 팩 1set 1. 모델링팩 1set (7매입) 주식회사
|
14 |
+
에이치티오인터내셔널'
|
15 |
+
- text: 더후 공진향 인양 넥앤페이스 탄력 리페어75ml 옵션없음 씨플랩
|
16 |
+
- text: 빌리프 슈퍼 나이츠-리제너레이팅 나이트 마스크 75ml 옵션없음 라임쇼핑
|
17 |
+
- text: 수이스킨 편안한 진정초 시트 마스크 5개입 × 1개 민물유통
|
18 |
+
- text: 참존 지안 극결 콘트롤 크림 225ml (리뉴얼제품) 옵션없음 슈슈
|
19 |
+
inference: true
|
20 |
+
model-index:
|
21 |
+
- name: SetFit with mini1013/setfit_robeta_base_s_domain
|
22 |
+
results:
|
23 |
+
- task:
|
24 |
+
type: text-classification
|
25 |
+
name: Text Classification
|
26 |
+
dataset:
|
27 |
+
name: Unknown
|
28 |
+
type: unknown
|
29 |
+
split: test
|
30 |
+
metrics:
|
31 |
+
- type: metric
|
32 |
+
value: 0.7714285714285715
|
33 |
+
name: Metric
|
34 |
+
---
|
35 |
+
|
36 |
+
# SetFit with mini1013/setfit_robeta_base_s_domain
|
37 |
+
|
38 |
+
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/setfit_robeta_base_s_domain](https://huggingface.co/mini1013/setfit_robeta_base_s_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
|
39 |
+
|
40 |
+
The model has been trained using an efficient few-shot learning technique that involves:
|
41 |
+
|
42 |
+
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
|
43 |
+
2. Training a classification head with features from the fine-tuned Sentence Transformer.
|
44 |
+
|
45 |
+
## Model Details
|
46 |
+
|
47 |
+
### Model Description
|
48 |
+
- **Model Type:** SetFit
|
49 |
+
- **Sentence Transformer body:** [mini1013/setfit_robeta_base_s_domain](https://huggingface.co/mini1013/setfit_robeta_base_s_domain)
|
50 |
+
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
|
51 |
+
- **Maximum Sequence Length:** 512 tokens
|
52 |
+
- **Number of Classes:** 8 classes
|
53 |
+
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
|
54 |
+
<!-- - **Language:** Unknown -->
|
55 |
+
<!-- - **License:** Unknown -->
|
56 |
+
|
57 |
+
### Model Sources
|
58 |
+
|
59 |
+
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
|
60 |
+
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
|
61 |
+
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
|
62 |
+
|
63 |
+
### Model Labels
|
64 |
+
| Label | Examples |
|
65 |
+
|:------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
66 |
+
| 4 | <ul><li>'메노킨 30초 퀵 버블 마스크 3종세트 (선물포장+세안밴드 ) 옵션없음 주식회사 포레스트에비뉴'</li><li>'라네즈 립 슬리핑 마스크EX 20g 각질케어 수면팩 자몽 20g (주)아모레퍼시픽'</li><li>'빌리프 슈퍼 나이츠 멀티 비타민 마스크 75ml 옵션없음 라임쇼핑'</li></ul> |
|
67 |
+
| 5 | <ul><li>'[러쉬]국내제조 컵 오 커피 325g - 페이스 마스크 / 커피팩 옵션없음 주식회사 러쉬코리아'</li><li>'올리고더미 딥클렌징 마스크 110ml+25ml+캐릭터파우치+스파츌라 리바이탈라이징 25ml(5mlx5매) [영양] 주식회사더마셀'</li><li>'스킨푸드 라벤더 푸드마스크 120g 02 딸기슈가_1개 미루코스메틱'</li></ul> |
|
68 |
+
| 3 | <ul><li>'[에스테프로] 708 티트리 알게러버 2000ml 고무마스크 모델링팩 피부미용사 실기준비물 에스테맥스 옵션없음 무제'</li><li>'린제이 프리미엄 쿨 티트리 모델링 마스크 고무팩 820g 11203606 옵션없음 세론세론'</li><li>'메디플라워 대용량 네이처 허브 모델링팩 쿨티트리 500g+히알루론산 멀티 부스터 500ml 쿨 티트리 500g_히알루론산 멀티 부스터 (주)메디플라워'</li></ul> |
|
69 |
+
| 2 | <ul><li>'바이오던스 바이오 콜라겐 리얼 딥 마스크 1매 옵션없음 에스제이유통'</li><li>'아리얼 세븐데이즈 마스크 카렌듈라 P 1매 도매가능 옵션없음 앱스'</li><li>'바노바기 밀크 씨슬 리페어 시카 퀵 마스크 플러스(30매) 제품 구매 시 +시카 폼 미니어처 1EA 증정 주식회사 바노바기'</li></ul> |
|
70 |
+
| 6 | <ul><li>'포잇 카카두 허니씨 톤업패드 60매 3개 옵션없음 스타일리시케이'</li><li>'미팩토리 3단 돼지 코팩, 3개입, 6개 3개입 × 6개 제이케이컴퍼니'</li><li>'올가드 아웃도어 패치 2패치 4매 3개 옵션없음 스타일리시케이'</li></ul> |
|
71 |
+
| 0 | <ul><li>'오릭스마사지크림(450ml) 옵션없음 고호성'</li><li>'모든순간 살구씨 찌든때 비타민 피지 살구스크럽 500g 옵션없음 데이포유'</li><li>'필로티카 시트랑스 겔 마스크 270ml 필로티카 시트랑스 겔 마스크 270ml 오드엘르'</li></ul> |
|
72 |
+
| 1 | <ul><li>'코 숨쉬기 입벌림 방지 호흡 유도 수면 보조 밴드 코골이 기구 용품 개선 제품 완화 기기 옵션없음 구씨네유통'</li><li>'희재감성 라인정리 이중턱 밴드 관리 리프팅 안면윤곽 단품(1701) 희재감성몰'</li><li>'50 개/몫 화이트 판지 카드 상자 포장 빈 마스크 더블 오픈 01 WHITE_06 9.2x8x5cm-50pcs 글로젠'</li></ul> |
|
73 |
+
| 7 | <ul><li>'ECLADO 에끌라두 로얄 밀크 프로틴 페이셜 마스크 70g 단백질 필오프팩 1개 옵션없음 주식회사 아워스'</li><li>'비건이펙트 슬로우 앤 에이징 저분자 콜라겐 물광 랩마스크 80ml 옵션없음 (주)부스트랩'</li><li>'메디필 레드락토 콜라겐 랩핑마스크 70ml 물광 리프팅 팩 옵션없음 웬디스룸'</li></ul> |
|
74 |
+
|
75 |
+
## Evaluation
|
76 |
+
|
77 |
+
### Metrics
|
78 |
+
| Label | Metric |
|
79 |
+
|:--------|:-------|
|
80 |
+
| **all** | 0.7714 |
|
81 |
+
|
82 |
+
## Uses
|
83 |
+
|
84 |
+
### Direct Use for Inference
|
85 |
+
|
86 |
+
First install the SetFit library:
|
87 |
+
|
88 |
+
```bash
|
89 |
+
pip install setfit
|
90 |
+
```
|
91 |
+
|
92 |
+
Then you can load this model and run inference.
|
93 |
+
|
94 |
+
```python
|
95 |
+
from setfit import SetFitModel
|
96 |
+
|
97 |
+
# Download from the 🤗 Hub
|
98 |
+
model = SetFitModel.from_pretrained("mini1013/master_cate_bt2")
|
99 |
+
# Run inference
|
100 |
+
preds = model("수이스킨 편안한 진정초 시트 마스크 5개입 × 1개 민물유통")
|
101 |
+
```
|
102 |
+
|
103 |
+
<!--
|
104 |
+
### Downstream Use
|
105 |
+
|
106 |
+
*List how someone could finetune this model on their own dataset.*
|
107 |
+
-->
|
108 |
+
|
109 |
+
<!--
|
110 |
+
### Out-of-Scope Use
|
111 |
+
|
112 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
113 |
+
-->
|
114 |
+
|
115 |
+
<!--
|
116 |
+
## Bias, Risks and Limitations
|
117 |
+
|
118 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
119 |
+
-->
|
120 |
+
|
121 |
+
<!--
|
122 |
+
### Recommendations
|
123 |
+
|
124 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
125 |
+
-->
|
126 |
+
|
127 |
+
## Training Details
|
128 |
+
|
129 |
+
### Training Set Metrics
|
130 |
+
| Training set | Min | Median | Max |
|
131 |
+
|:-------------|:----|:-------|:----|
|
132 |
+
| Word count | 3 | 9.8591 | 27 |
|
133 |
+
|
134 |
+
| Label | Training Sample Count |
|
135 |
+
|:------|:----------------------|
|
136 |
+
| 0 | 90 |
|
137 |
+
| 1 | 78 |
|
138 |
+
| 2 | 88 |
|
139 |
+
| 3 | 95 |
|
140 |
+
| 4 | 94 |
|
141 |
+
| 5 | 90 |
|
142 |
+
| 6 | 84 |
|
143 |
+
| 7 | 34 |
|
144 |
+
|
145 |
+
### Training Hyperparameters
|
146 |
+
- batch_size: (512, 512)
|
147 |
+
- num_epochs: (20, 20)
|
148 |
+
- max_steps: -1
|
149 |
+
- sampling_strategy: oversampling
|
150 |
+
- num_iterations: 30
|
151 |
+
- body_learning_rate: (2e-05, 2e-05)
|
152 |
+
- head_learning_rate: 2e-05
|
153 |
+
- loss: CosineSimilarityLoss
|
154 |
+
- distance_metric: cosine_distance
|
155 |
+
- margin: 0.25
|
156 |
+
- end_to_end: False
|
157 |
+
- use_amp: False
|
158 |
+
- warmup_proportion: 0.1
|
159 |
+
- seed: 42
|
160 |
+
- eval_max_steps: -1
|
161 |
+
- load_best_model_at_end: False
|
162 |
+
|
163 |
+
### Training Results
|
164 |
+
| Epoch | Step | Training Loss | Validation Loss |
|
165 |
+
|:-------:|:----:|:-------------:|:---------------:|
|
166 |
+
| 0.0130 | 1 | 0.4922 | - |
|
167 |
+
| 0.6494 | 50 | 0.2317 | - |
|
168 |
+
| 1.2987 | 100 | 0.0726 | - |
|
169 |
+
| 1.9481 | 150 | 0.033 | - |
|
170 |
+
| 2.5974 | 200 | 0.0322 | - |
|
171 |
+
| 3.2468 | 250 | 0.0056 | - |
|
172 |
+
| 3.8961 | 300 | 0.001 | - |
|
173 |
+
| 4.5455 | 350 | 0.0003 | - |
|
174 |
+
| 5.1948 | 400 | 0.0001 | - |
|
175 |
+
| 5.8442 | 450 | 0.0001 | - |
|
176 |
+
| 6.4935 | 500 | 0.0001 | - |
|
177 |
+
| 7.1429 | 550 | 0.0002 | - |
|
178 |
+
| 7.7922 | 600 | 0.0001 | - |
|
179 |
+
| 8.4416 | 650 | 0.0001 | - |
|
180 |
+
| 9.0909 | 700 | 0.0001 | - |
|
181 |
+
| 9.7403 | 750 | 0.0001 | - |
|
182 |
+
| 10.3896 | 800 | 0.0006 | - |
|
183 |
+
| 11.0390 | 850 | 0.0001 | - |
|
184 |
+
| 11.6883 | 900 | 0.0001 | - |
|
185 |
+
| 12.3377 | 950 | 0.0001 | - |
|
186 |
+
| 12.9870 | 1000 | 0.0 | - |
|
187 |
+
| 13.6364 | 1050 | 0.0 | - |
|
188 |
+
| 14.2857 | 1100 | 0.0 | - |
|
189 |
+
| 14.9351 | 1150 | 0.0 | - |
|
190 |
+
| 15.5844 | 1200 | 0.0 | - |
|
191 |
+
| 16.2338 | 1250 | 0.0 | - |
|
192 |
+
| 16.8831 | 1300 | 0.0 | - |
|
193 |
+
| 17.5325 | 1350 | 0.0 | - |
|
194 |
+
| 18.1818 | 1400 | 0.0 | - |
|
195 |
+
| 18.8312 | 1450 | 0.0 | - |
|
196 |
+
| 19.4805 | 1500 | 0.0 | - |
|
197 |
+
|
198 |
+
### Framework Versions
|
199 |
+
- Python: 3.10.12
|
200 |
+
- SetFit: 1.1.0.dev0
|
201 |
+
- Sentence Transformers: 3.1.1
|
202 |
+
- Transformers: 4.45.1
|
203 |
+
- PyTorch: 2.4.0+cu121
|
204 |
+
- Datasets: 2.20.0
|
205 |
+
- Tokenizers: 0.20.0
|
206 |
+
|
207 |
+
## Citation
|
208 |
+
|
209 |
+
### BibTeX
|
210 |
+
```bibtex
|
211 |
+
@article{https://doi.org/10.48550/arxiv.2209.11055,
|
212 |
+
doi = {10.48550/ARXIV.2209.11055},
|
213 |
+
url = {https://arxiv.org/abs/2209.11055},
|
214 |
+
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
|
215 |
+
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
216 |
+
title = {Efficient Few-Shot Learning Without Prompts},
|
217 |
+
publisher = {arXiv},
|
218 |
+
year = {2022},
|
219 |
+
copyright = {Creative Commons Attribution 4.0 International}
|
220 |
+
}
|
221 |
+
```
|
222 |
+
|
223 |
+
<!--
|
224 |
+
## Glossary
|
225 |
+
|
226 |
+
*Clearly define terms in order to be accessible across audiences.*
|
227 |
+
-->
|
228 |
+
|
229 |
+
<!--
|
230 |
+
## Model Card Authors
|
231 |
+
|
232 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
233 |
+
-->
|
234 |
+
|
235 |
+
<!--
|
236 |
+
## Model Card Contact
|
237 |
+
|
238 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
239 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "mini1013/setfit_robeta_base_bt_item",
|
3 |
+
"architectures": [
|
4 |
+
"RobertaModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"bos_token_id": 0,
|
8 |
+
"classifier_dropout": null,
|
9 |
+
"eos_token_id": 2,
|
10 |
+
"gradient_checkpointing": false,
|
11 |
+
"hidden_act": "gelu",
|
12 |
+
"hidden_dropout_prob": 0.1,
|
13 |
+
"hidden_size": 768,
|
14 |
+
"initializer_range": 0.02,
|
15 |
+
"intermediate_size": 3072,
|
16 |
+
"layer_norm_eps": 1e-05,
|
17 |
+
"max_position_embeddings": 514,
|
18 |
+
"model_type": "roberta",
|
19 |
+
"num_attention_heads": 12,
|
20 |
+
"num_hidden_layers": 12,
|
21 |
+
"pad_token_id": 1,
|
22 |
+
"position_embedding_type": "absolute",
|
23 |
+
"tokenizer_class": "BertTokenizer",
|
24 |
+
"torch_dtype": "float32",
|
25 |
+
"transformers_version": "4.45.1",
|
26 |
+
"type_vocab_size": 1,
|
27 |
+
"use_cache": true,
|
28 |
+
"vocab_size": 32000
|
29 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.1.1",
|
4 |
+
"transformers": "4.45.1",
|
5 |
+
"pytorch": "2.4.0+cu121"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": null
|
10 |
+
}
|
config_setfit.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"labels": null,
|
3 |
+
"normalize_embeddings": false
|
4 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b2df1d765584937f36ad5033062cbfdddbe8779d5cdd57ffe1871147b84fa399
|
3 |
+
size 442494816
|
model_head.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:137dbc936cca9ebf3024e702ff59e072522026629abaced639f3c195362434ef
|
3 |
+
size 50119
|
modules.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
}
|
14 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 512,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "[CLS]",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"cls_token": {
|
10 |
+
"content": "[CLS]",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"eos_token": {
|
17 |
+
"content": "[SEP]",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"mask_token": {
|
24 |
+
"content": "[MASK]",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"pad_token": {
|
31 |
+
"content": "[PAD]",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
},
|
37 |
+
"sep_token": {
|
38 |
+
"content": "[SEP]",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false
|
43 |
+
},
|
44 |
+
"unk_token": {
|
45 |
+
"content": "[UNK]",
|
46 |
+
"lstrip": false,
|
47 |
+
"normalized": false,
|
48 |
+
"rstrip": false,
|
49 |
+
"single_word": false
|
50 |
+
}
|
51 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[CLS]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "[PAD]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "[SEP]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"3": {
|
28 |
+
"content": "[UNK]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"4": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"bos_token": "[CLS]",
|
45 |
+
"clean_up_tokenization_spaces": false,
|
46 |
+
"cls_token": "[CLS]",
|
47 |
+
"do_basic_tokenize": true,
|
48 |
+
"do_lower_case": false,
|
49 |
+
"eos_token": "[SEP]",
|
50 |
+
"mask_token": "[MASK]",
|
51 |
+
"max_length": 512,
|
52 |
+
"model_max_length": 512,
|
53 |
+
"never_split": null,
|
54 |
+
"pad_to_multiple_of": null,
|
55 |
+
"pad_token": "[PAD]",
|
56 |
+
"pad_token_type_id": 0,
|
57 |
+
"padding_side": "right",
|
58 |
+
"sep_token": "[SEP]",
|
59 |
+
"stride": 0,
|
60 |
+
"strip_accents": null,
|
61 |
+
"tokenize_chinese_chars": true,
|
62 |
+
"tokenizer_class": "BertTokenizer",
|
63 |
+
"truncation_side": "right",
|
64 |
+
"truncation_strategy": "longest_first",
|
65 |
+
"unk_token": "[UNK]"
|
66 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|