mini1013 commited on
Commit
1e9a56c
·
verified ·
1 Parent(s): 2f8a568

Push model using huggingface_hub.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,225 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - setfit
4
+ - sentence-transformers
5
+ - text-classification
6
+ - generated_from_setfit_trainer
7
+ widget:
8
+ - text: 매일유업 앱솔루트 센서티브 1단계 900g x 1개 [음료] 차음료_비락식혜175ml30캔 출산/육아 > 분유 > 국내분유
9
+ - text: Hipp 힙 콤비오틱 유기농 1단계 800g [육아] 분유_Hipp 힙 콤비오틱 유기농 3단계 800g 출산/육아 > 분유 > 수입분유
10
+ - text: 남양유업 아이엠마더 액상 3단계 240ml x96개 출산/육아 > 분유 > 국내분유
11
+ - text: 일동후디스 프리미엄 산양분유 3단계 800g x 1개 [육아] 분유_파스퇴르 무항생제 위드맘 3단계 750g 출산/육아 > 분유 >
12
+ 국내분유
13
+ - text: 일동후디스 프리미엄 산양분유 1단계 800g x 1개 [음료] 탄산음료_웰치스제로오렌지355ml24캔 출산/육아 > 분유 > 국내분유
14
+ metrics:
15
+ - accuracy
16
+ pipeline_tag: text-classification
17
+ library_name: setfit
18
+ inference: true
19
+ base_model: mini1013/master_domain
20
+ model-index:
21
+ - name: SetFit with mini1013/master_domain
22
+ results:
23
+ - task:
24
+ type: text-classification
25
+ name: Text Classification
26
+ dataset:
27
+ name: Unknown
28
+ type: unknown
29
+ split: test
30
+ metrics:
31
+ - type: accuracy
32
+ value: 1.0
33
+ name: Accuracy
34
+ ---
35
+
36
+ # SetFit with mini1013/master_domain
37
+
38
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
39
+
40
+ The model has been trained using an efficient few-shot learning technique that involves:
41
+
42
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
43
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
44
+
45
+ ## Model Details
46
+
47
+ ### Model Description
48
+ - **Model Type:** SetFit
49
+ - **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain)
50
+ - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
51
+ - **Maximum Sequence Length:** 512 tokens
52
+ - **Number of Classes:** 3 classes
53
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
54
+ <!-- - **Language:** Unknown -->
55
+ <!-- - **License:** Unknown -->
56
+
57
+ ### Model Sources
58
+
59
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
60
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
61
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
62
+
63
+ ### Model Labels
64
+ | Label | Examples |
65
+ |:------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
66
+ | 2.0 | <ul><li>'셀렉스 매일 마시는 프로틴 12l 160ml × 48개 출산/육아 > 분유 > 특수분유'</li><li>'일동후디스 초유밀플러스2단계 1캔(1gx90포)) 출산/육아 > 분유 > 특수분유'</li><li>'gvp 스마트폰 카드포켓 스마트링블랙 출산/육아 > 분유 > 특수분유'</li></ul> |
67
+ | 0.0 | <ul><li>'매일유업 앱솔루트 명작 2FL 액상 2단계 240ml 24개 x2개 출산/육아 > 분유 > 국내분유'</li><li>'매일유업 앱솔루트 센서티브 1단계 900g x 1개 [라면] 봉지라면_얼큰한 너구리 120g 20개 출산/육아 > 분유 > 국내분유'</li><li>'매일유업 앱솔루트 센서티브 1단계 900g x 1개 [음료] 우유두유_삼육검은콩앤칼슘파우치190ml40팩 출산/육아 > 분유 > 국내분유'</li></ul> |
68
+ | 1.0 | <ul><li>'힙 압타밀 HA 뢰벤짠 밀라산 홀레 퇴퍼 베바 세레락 프레 2단계 콤비오틱 무전분 산양 [퇴퍼] Töpfer_퇴퍼 락타나 600g (최대8통)_[1통] xPRE Topfer 출산/육아 > 분유 > 수입분유'</li><li>'뉴트리시아 압타밀 프로누트라 어드밴스 2단계 800g [음료] 탄산음료_데미소다피치250ml30캔 출산/육아 > 분유 > 수입분유'</li><li>'퇴퍼 홀레 뢰벤짠 힙 노발락 압타밀 무전분 AR 킨더밀쉬 압타밀 오가닉(New)_오가닉 2 800g 1통_◆dm4056631003169_1◆ 출산/육아 > 분유 > 수입분유'</li></ul> |
69
+
70
+ ## Evaluation
71
+
72
+ ### Metrics
73
+ | Label | Accuracy |
74
+ |:--------|:---------|
75
+ | **all** | 1.0 |
76
+
77
+ ## Uses
78
+
79
+ ### Direct Use for Inference
80
+
81
+ First install the SetFit library:
82
+
83
+ ```bash
84
+ pip install setfit
85
+ ```
86
+
87
+ Then you can load this model and run inference.
88
+
89
+ ```python
90
+ from setfit import SetFitModel
91
+
92
+ # Download from the 🤗 Hub
93
+ model = SetFitModel.from_pretrained("mini1013/master_cate_bc6")
94
+ # Run inference
95
+ preds = model("남양유업 아이엠마더 액상 3단계 240ml x96개 출산/육아 > 분유 > 국내분유")
96
+ ```
97
+
98
+ <!--
99
+ ### Downstream Use
100
+
101
+ *List how someone could finetune this model on their own dataset.*
102
+ -->
103
+
104
+ <!--
105
+ ### Out-of-Scope Use
106
+
107
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
108
+ -->
109
+
110
+ <!--
111
+ ## Bias, Risks and Limitations
112
+
113
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
114
+ -->
115
+
116
+ <!--
117
+ ### Recommendations
118
+
119
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
120
+ -->
121
+
122
+ ## Training Details
123
+
124
+ ### Training Set Metrics
125
+ | Training set | Min | Median | Max |
126
+ |:-------------|:----|:--------|:----|
127
+ | Word count | 7 | 14.9429 | 30 |
128
+
129
+ | Label | Training Sample Count |
130
+ |:------|:----------------------|
131
+ | 0.0 | 70 |
132
+ | 1.0 | 70 |
133
+ | 2.0 | 70 |
134
+
135
+ ### Training Hyperparameters
136
+ - batch_size: (256, 256)
137
+ - num_epochs: (30, 30)
138
+ - max_steps: -1
139
+ - sampling_strategy: oversampling
140
+ - num_iterations: 50
141
+ - body_learning_rate: (2e-05, 1e-05)
142
+ - head_learning_rate: 0.01
143
+ - loss: CosineSimilarityLoss
144
+ - distance_metric: cosine_distance
145
+ - margin: 0.25
146
+ - end_to_end: False
147
+ - use_amp: False
148
+ - warmup_proportion: 0.1
149
+ - l2_weight: 0.01
150
+ - seed: 42
151
+ - eval_max_steps: -1
152
+ - load_best_model_at_end: False
153
+
154
+ ### Training Results
155
+ | Epoch | Step | Training Loss | Validation Loss |
156
+ |:-------:|:----:|:-------------:|:---------------:|
157
+ | 0.0238 | 1 | 0.4943 | - |
158
+ | 1.1905 | 50 | 0.4806 | - |
159
+ | 2.3810 | 100 | 0.1671 | - |
160
+ | 3.5714 | 150 | 0.0003 | - |
161
+ | 4.7619 | 200 | 0.0 | - |
162
+ | 5.9524 | 250 | 0.0 | - |
163
+ | 7.1429 | 300 | 0.0 | - |
164
+ | 8.3333 | 350 | 0.0 | - |
165
+ | 9.5238 | 400 | 0.0 | - |
166
+ | 10.7143 | 450 | 0.0 | - |
167
+ | 11.9048 | 500 | 0.0 | - |
168
+ | 13.0952 | 550 | 0.0 | - |
169
+ | 14.2857 | 600 | 0.0 | - |
170
+ | 15.4762 | 650 | 0.0 | - |
171
+ | 16.6667 | 700 | 0.0 | - |
172
+ | 17.8571 | 750 | 0.0 | - |
173
+ | 19.0476 | 800 | 0.0 | - |
174
+ | 20.2381 | 850 | 0.0 | - |
175
+ | 21.4286 | 900 | 0.0 | - |
176
+ | 22.6190 | 950 | 0.0 | - |
177
+ | 23.8095 | 1000 | 0.0 | - |
178
+ | 25.0 | 1050 | 0.0 | - |
179
+ | 26.1905 | 1100 | 0.0 | - |
180
+ | 27.3810 | 1150 | 0.0 | - |
181
+ | 28.5714 | 1200 | 0.0 | - |
182
+ | 29.7619 | 1250 | 0.0 | - |
183
+
184
+ ### Framework Versions
185
+ - Python: 3.10.12
186
+ - SetFit: 1.1.0
187
+ - Sentence Transformers: 3.3.1
188
+ - Transformers: 4.44.2
189
+ - PyTorch: 2.2.0a0+81ea7a4
190
+ - Datasets: 3.2.0
191
+ - Tokenizers: 0.19.1
192
+
193
+ ## Citation
194
+
195
+ ### BibTeX
196
+ ```bibtex
197
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
198
+ doi = {10.48550/ARXIV.2209.11055},
199
+ url = {https://arxiv.org/abs/2209.11055},
200
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
201
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
202
+ title = {Efficient Few-Shot Learning Without Prompts},
203
+ publisher = {arXiv},
204
+ year = {2022},
205
+ copyright = {Creative Commons Attribution 4.0 International}
206
+ }
207
+ ```
208
+
209
+ <!--
210
+ ## Glossary
211
+
212
+ *Clearly define terms in order to be accessible across audiences.*
213
+ -->
214
+
215
+ <!--
216
+ ## Model Card Authors
217
+
218
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
219
+ -->
220
+
221
+ <!--
222
+ ## Model Card Contact
223
+
224
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
225
+ -->
config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "mini1013/master_item_bc",
3
+ "architectures": [
4
+ "RobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "gradient_checkpointing": false,
11
+ "hidden_act": "gelu",
12
+ "hidden_dropout_prob": 0.1,
13
+ "hidden_size": 768,
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 3072,
16
+ "layer_norm_eps": 1e-05,
17
+ "max_position_embeddings": 514,
18
+ "model_type": "roberta",
19
+ "num_attention_heads": 12,
20
+ "num_hidden_layers": 12,
21
+ "pad_token_id": 1,
22
+ "position_embedding_type": "absolute",
23
+ "tokenizer_class": "BertTokenizer",
24
+ "torch_dtype": "float32",
25
+ "transformers_version": "4.44.2",
26
+ "type_vocab_size": 1,
27
+ "use_cache": true,
28
+ "vocab_size": 32000
29
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.3.1",
4
+ "transformers": "4.44.2",
5
+ "pytorch": "2.2.0a0+81ea7a4"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
config_setfit.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "labels": null,
3
+ "normalize_embeddings": false
4
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:613eb9a4f311abff34cf977e8c95ba360f1d833ef3c2357dc6255bad4d9eb8b7
3
+ size 442494816
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:18c8de8ffa0167fb36ce3736a337608e24f3aced1e5dbd072a9ab7fd4f616982
3
+ size 19295
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "[CLS]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "[SEP]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "[MASK]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "[PAD]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "[SEP]",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[CLS]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "[PAD]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "[SEP]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "[UNK]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "4": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "[CLS]",
45
+ "clean_up_tokenization_spaces": false,
46
+ "cls_token": "[CLS]",
47
+ "do_basic_tokenize": true,
48
+ "do_lower_case": false,
49
+ "eos_token": "[SEP]",
50
+ "mask_token": "[MASK]",
51
+ "max_length": 512,
52
+ "model_max_length": 512,
53
+ "never_split": null,
54
+ "pad_to_multiple_of": null,
55
+ "pad_token": "[PAD]",
56
+ "pad_token_type_id": 0,
57
+ "padding_side": "right",
58
+ "sep_token": "[SEP]",
59
+ "stride": 0,
60
+ "strip_accents": null,
61
+ "tokenize_chinese_chars": true,
62
+ "tokenizer_class": "BertTokenizer",
63
+ "truncation_side": "right",
64
+ "truncation_strategy": "longest_first",
65
+ "unk_token": "[UNK]"
66
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff