File size: 15,069 Bytes
9c316ca |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 |
---
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: LSA 흡착식판 친환경 아이 캠핑 실리콘 이유식 식판 접시 블루 출산/육아 > 이유식용품 > 유아식기
- text: "캐치티니핑 수저세트 교정젓가락 유아 교정용 아기젓가락 어린이젓가락 연습용 5.\uFEFF티니핑 물컵 스텐컵_3.퐁당핑 논슬립 스텐컵\
\ 출산/육아 > 이유식용품 > 연습용젓가락"
- text: 닥터브라운 흘림방지 360도컵 3개 (반투명 트레이닝 아기안전컵 - 9종 중 택3) 3) 300ml(손잡이) 블루_4) 300ml(손잡이)
그린_3) 300ml(손잡이) 블루 출산/육아 > 이유식용품 > 유아컵
- text: 귀여운 유아식기 흡착볼 접시 컵 스푼 포크 세트 이유식식기 돌아기식판 아기선물 3.디너세트(식판+볼+컵+스푼&포크)_01 Rainy
출산/육아 > 이유식용품 > 유아식기
- text: 4p 투데코 이유식 도자기 조리기세트 화이트 출산/육아 > 이유식용품 > 조리기
metrics:
- accuracy
pipeline_tag: text-classification
library_name: setfit
inference: true
base_model: mini1013/master_domain
model-index:
- name: SetFit with mini1013/master_domain
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Unknown
type: unknown
split: test
metrics:
- type: accuracy
value: 1.0
name: Accuracy
---
# SetFit with mini1013/master_domain
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
## Model Details
### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 512 tokens
- **Number of Classes:** 8 classes
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
### Model Labels
| Label | Examples |
|:------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7.0 | <ul><li>'방수전신미술가운 올인원 수트지퍼형 204526 유아동 핑크120 출산/육아 > 이유식용품 > 턱받이'</li><li>'아가짱 실리콘턱받이 아기 이유식 턱받이 03.실리콘턱받이_원숭이 출산/육아 > 이유식용품 > 턱받이'</li><li>'무형광 침받이 토끼 출산/육아 > 이유식용품 > 턱받이'</li></ul> |
| 3.0 | <ul><li>'캐릭터 스푼 포크 젓가락 어린이 수저세트 유아 뽀로로 겨울왕국 어린이집 아기 144 헬로키티 올스텐 수저세트 출산/육아 > 이유식용품 > 유아스푼/포크'</li><li>'비박스 원터치 트라이탄 대용량 빨대컵 450ml 2개 TS 443931 블루슬레이트_오렌지핑크 출산/육아 > 이유식용품 > 유아스푼/포크'</li><li>'브릭오 애착스푼 초기 중기 후기 실리콘 이유식 수저 민트 출산/육아 > 이유식용품 > 유아스푼/포크'</li></ul> |
| 1.0 | <ul><li>'논슬립 흡착식 휴대용 사무실 보틀 피크닉 보온보냉 보냉 종류_350ml-핑크 출산/육아 > 이유식용품 > 기타이유식용품'</li><li>'더미누 방수요 아기 유아 방수패드 국내산/중형/대형 방수요 M 사이즈 (공 룡) 출산/육아 > 이유식용품 > 기타이유식용품'</li><li>'엘로니파파 이유식용기 실리콘 양면 흡착판 11컬러 인디핑크 출산/육아 > 이유식용품 > 기타이유식용품'</li></ul> |
| 5.0 | <ul><li>'[빠띠라인] 스마트 트레이닝컵 220ml 4종 택1 그린 출산/육아 > 이유식용품 > 유아컵'</li><li>'맘스모도 PPSU 원터치 빨대컵 250ml 1+1 11절 기념 코끼리 그린+베이지 출산/육아 > 이유식용품 > 유아컵'</li><li>'아이별프렌즈 유아 빨대컵 아기 젖병 모음전 01번 캐럿 추빨대컵+리필사은품_270ml 오렌지 출산/육아 > 이유식용품 > 유아컵'</li></ul> |
| 0.0 | <ul><li>'과즙망 바나나 실리콘 옐로우 출산/육아 > 이유식용품 > 과즙망'</li><li>'오가닉팩토리 실리콘 과즙망 유아용 아기과즙망 자기주도 이유식 치발기 과일망 과즙망 그레이 출산/육아 > 이유식용품 > 과즙망'</li><li>'아가프라 국산 실리콘 과즙망(소 중 망2개포함) 아기 이유식 준비물 국민 과즙망(오렌지) 출산/육아 > 이유식용품 > 과즙망'</li></ul> |
| 4.0 | <ul><li>'티지엠 실리콘 조가비 흡착 식판 자기주도 이유식 이유식판 흡착트레이 베이지_덮개 미선택_초콜릿(매트) 출산/육아 > 이유식용품 > 유아식기'</li><li>'옥수수 돌 아기식판 이유식그릇 이유식볼 유아 아기 수저포크식기세트 준비물 4칸접시_아이보리 출산/육아 > 이유식용품 > 유아식기'</li><li>'옥수수 내열 펭귄 식판 아기 그릇 나눔 선물 5P 스푼포크세트 아이보리 출산/육아 > 이유식용품 > 유아식기'</li></ul> |
| 2.0 | <ul><li>'에디슨 뽀로로 이지 스텐 수저 케이스세트 패티 출산/육아 > 이유식용품 > 연습용젓가락'</li><li>'에디슨 젓가락 1/2단계-뽀로로 패티 폴리 엠버 프렌즈 왼손 성인 경찰 소방관 부엉이 스텐 스푼포크 수저세트 16.프렌즈 젓가락 1단계 돼지 출산/육아 > 이유식용품 > 연습용젓가락'</li><li>'유아 아동 초등학생 어린이 아기 캐릭터 교정용 스텐 젓가락 수저집 수저케이스세트 모음 캐릭터세트(D)1단계_D05_입체교정젓가락-핑크퐁 큐티SET 출산/육아 > 이유식용품 > 연습용젓가락'</li></ul> |
| 6.0 | <ul><li>'원목뜰채 고운망 5호 AW1E2C93 출산/육아 > 이유식용품 > 조리기'</li><li>'[베이비리앙] 프리미엄 실리콘 이유식 스파츌라_유아 아기 자기주도 이유식 스푼 커틀러리 마일드 블루 출산/육아 > 이유식용품 > 조리기'</li><li>'유비맘 PPSU 시그니처 역류방지 유아빨대컵 280ml 2P 딸기_8.바나나 출산/육아 > 이유식용품 > 조리기'</li></ul> |
## Evaluation
### Metrics
| Label | Accuracy |
|:--------|:---------|
| **all** | 1.0 |
## Uses
### Direct Use for Inference
First install the SetFit library:
```bash
pip install setfit
```
Then you can load this model and run inference.
```python
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("mini1013/master_cate_bc26")
# Run inference
preds = model("4p 투데코 이유식 도자기 조리기세트 화이트 출산/육아 > 이유식용품 > 조리기")
```
<!--
### Downstream Use
*List how someone could finetune this model on their own dataset.*
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Set Metrics
| Training set | Min | Median | Max |
|:-------------|:----|:-------|:----|
| Word count | 7 | 15.075 | 30 |
| Label | Training Sample Count |
|:------|:----------------------|
| 0.0 | 70 |
| 1.0 | 70 |
| 2.0 | 70 |
| 3.0 | 70 |
| 4.0 | 70 |
| 5.0 | 70 |
| 6.0 | 70 |
| 7.0 | 70 |
### Training Hyperparameters
- batch_size: (256, 256)
- num_epochs: (30, 30)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 50
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- l2_weight: 0.01
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
### Training Results
| Epoch | Step | Training Loss | Validation Loss |
|:-------:|:----:|:-------------:|:---------------:|
| 0.0091 | 1 | 0.4946 | - |
| 0.4545 | 50 | 0.5017 | - |
| 0.9091 | 100 | 0.4932 | - |
| 1.3636 | 150 | 0.3697 | - |
| 1.8182 | 200 | 0.0968 | - |
| 2.2727 | 250 | 0.0213 | - |
| 2.7273 | 300 | 0.0175 | - |
| 3.1818 | 350 | 0.0186 | - |
| 3.6364 | 400 | 0.0187 | - |
| 4.0909 | 450 | 0.0136 | - |
| 4.5455 | 500 | 0.0007 | - |
| 5.0 | 550 | 0.0001 | - |
| 5.4545 | 600 | 0.0001 | - |
| 5.9091 | 650 | 0.0001 | - |
| 6.3636 | 700 | 0.0001 | - |
| 6.8182 | 750 | 0.0001 | - |
| 7.2727 | 800 | 0.0001 | - |
| 7.7273 | 850 | 0.0001 | - |
| 8.1818 | 900 | 0.0 | - |
| 8.6364 | 950 | 0.0 | - |
| 9.0909 | 1000 | 0.0 | - |
| 9.5455 | 1050 | 0.0 | - |
| 10.0 | 1100 | 0.0 | - |
| 10.4545 | 1150 | 0.0 | - |
| 10.9091 | 1200 | 0.0 | - |
| 11.3636 | 1250 | 0.0 | - |
| 11.8182 | 1300 | 0.0 | - |
| 12.2727 | 1350 | 0.0 | - |
| 12.7273 | 1400 | 0.0 | - |
| 13.1818 | 1450 | 0.0 | - |
| 13.6364 | 1500 | 0.0 | - |
| 14.0909 | 1550 | 0.0 | - |
| 14.5455 | 1600 | 0.0 | - |
| 15.0 | 1650 | 0.0 | - |
| 15.4545 | 1700 | 0.0 | - |
| 15.9091 | 1750 | 0.0 | - |
| 16.3636 | 1800 | 0.0 | - |
| 16.8182 | 1850 | 0.0 | - |
| 17.2727 | 1900 | 0.0 | - |
| 17.7273 | 1950 | 0.0 | - |
| 18.1818 | 2000 | 0.0 | - |
| 18.6364 | 2050 | 0.0 | - |
| 19.0909 | 2100 | 0.0 | - |
| 19.5455 | 2150 | 0.0 | - |
| 20.0 | 2200 | 0.0 | - |
| 20.4545 | 2250 | 0.0 | - |
| 20.9091 | 2300 | 0.0 | - |
| 21.3636 | 2350 | 0.0 | - |
| 21.8182 | 2400 | 0.0 | - |
| 22.2727 | 2450 | 0.0 | - |
| 22.7273 | 2500 | 0.0 | - |
| 23.1818 | 2550 | 0.0 | - |
| 23.6364 | 2600 | 0.0 | - |
| 24.0909 | 2650 | 0.0 | - |
| 24.5455 | 2700 | 0.0 | - |
| 25.0 | 2750 | 0.0 | - |
| 25.4545 | 2800 | 0.0 | - |
| 25.9091 | 2850 | 0.0 | - |
| 26.3636 | 2900 | 0.0 | - |
| 26.8182 | 2950 | 0.0 | - |
| 27.2727 | 3000 | 0.0 | - |
| 27.7273 | 3050 | 0.0 | - |
| 28.1818 | 3100 | 0.0 | - |
| 28.6364 | 3150 | 0.0 | - |
| 29.0909 | 3200 | 0.0 | - |
| 29.5455 | 3250 | 0.0 | - |
| 30.0 | 3300 | 0.0 | - |
### Framework Versions
- Python: 3.10.12
- SetFit: 1.1.0
- Sentence Transformers: 3.3.1
- Transformers: 4.44.2
- PyTorch: 2.2.0a0+81ea7a4
- Datasets: 3.2.0
- Tokenizers: 0.19.1
## Citation
### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |