mini1013 commited on
Commit
ae8810f
·
verified ·
1 Parent(s): 3eb8f59

Push model using huggingface_hub.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,246 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - setfit
4
+ - sentence-transformers
5
+ - text-classification
6
+ - generated_from_setfit_trainer
7
+ widget:
8
+ - text: '[즉시15%+중복20%] 예꼬맘 어린이 실크 칫솔 0.07mm 3개 예꼬맘실크칫솔화이트 1단계_예꼬맘실크칫솔핑크 2단계_예꼬맘실크칫솔옐로우
9
+ 1단계 출산/육아 > 유아세제 > 유아세탁비누'
10
+ - text: 2023 에브리케어 블랙프라이데이 12. 주방세제 500g 출산/육아 > 유아세제 > 유아세탁세제
11
+ - text: 마이비 피부에순한 유아섬유유연제 (리필 1600ml) 출산/육아 > 유아세제 > 유아세탁비누
12
+ - text: 베르블랑 중성 아기세제 1L X 3개 (프리미엄 가루세제 구연산 1kg) 머스크향[VB-LM3]_프리미엄 가루세제 구연산 1kg[VB-CA1]
13
+ 출산/육아 > 유아세제 > 유아세탁세제
14
+ - text: 비브라이트 어린이 LED 타이머 유아칫솔 양치컵홀더3P세트 핑크냐옹 출산/육아 > 유아세제 > 유아세탁비누
15
+ metrics:
16
+ - accuracy
17
+ pipeline_tag: text-classification
18
+ library_name: setfit
19
+ inference: true
20
+ base_model: mini1013/master_domain
21
+ model-index:
22
+ - name: SetFit with mini1013/master_domain
23
+ results:
24
+ - task:
25
+ type: text-classification
26
+ name: Text Classification
27
+ dataset:
28
+ name: Unknown
29
+ type: unknown
30
+ split: test
31
+ metrics:
32
+ - type: accuracy
33
+ value: 1.0
34
+ name: Accuracy
35
+ ---
36
+
37
+ # SetFit with mini1013/master_domain
38
+
39
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
40
+
41
+ The model has been trained using an efficient few-shot learning technique that involves:
42
+
43
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
44
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
45
+
46
+ ## Model Details
47
+
48
+ ### Model Description
49
+ - **Model Type:** SetFit
50
+ - **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain)
51
+ - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
52
+ - **Maximum Sequence Length:** 512 tokens
53
+ - **Number of Classes:** 5 classes
54
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
55
+ <!-- - **Language:** Unknown -->
56
+ <!-- - **License:** Unknown -->
57
+
58
+ ### Model Sources
59
+
60
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
61
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
62
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
63
+
64
+ ### Model Labels
65
+ | Label | Examples |
66
+ |:------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
67
+ | 4.0 | <ul><li>'비앤비 섬유유연제 베르가못 캡리필 1800ml X 6개 출산/육아 > 유아세제 > 혼합세트'</li><li>'베비언스 아기세제 핑크퐁 베이비 아기섬유유연제 유아세탁세제 유아세제 섬유유연제 출산/육아 > 유아세제 > 혼합세트'</li><li>'레드루트 유아 아기 세탁세제1L+유연제1L 향 선택 머스크플로랄_바닐라코튼 출산/육아 > 유아세제 > 혼합세트'</li></ul> |
68
+ | 2.0 | <ul><li>'생활용품세탁세재욕실청소 베르블랑 유아 섬유 유연제 그린플로럴향 1000ml, 1개 샹활용품욕실청소세탁세재 생활용품욕실청소세탁세재 생활용품 1000ml × 3개 출산/육아 > 유아세제 > 유아유연제'</li><li>'레드루트 건조기시트 섬유유연제 50매 향선택 건조기시트50매_스위트 출산/육아 > 유아세제 > 유아유연제'</li><li>'비앤비 유아 아기 신생아 섬유유연제 1800ml 3팩 리필 베이비 유연제 액상형 섬유린스 세제/유연제_09.유연제베르가못1800ml리필×4 출산/육아 > 유아세제 > 유아유연제'</li></ul> |
69
+ | 3.0 | <ul><li>'마더케이 디아 산소계 표백제 1kg (무향) 출산/육아 > 유아세제 > 유아표백제/얼룩제거제'</li><li>'비앤비 얼룩제거제 500ml 옷얼룩제거 유아옷 얼룩제거 천연��분 함유 젖병세정제_거품 450ml 용기 출산/육아 > 유아세제 > 유아표백제/얼룩제거제'</li><li>'마이비 얼룩제거제 330ml + 리필 300ml x 3개 출산/육아 > 유아세제 > 유아표백제/얼룩제거제'</li></ul> |
70
+ | 0.0 | <ul><li>'아이앤어스 독일더마 프리미엄 캡슐형 세탁세제 30개입 x4팩 아이앤어스 독일더마 프리미엄 캡슐형 세탁세제 출산/육아 > 유아세제 > 유아세탁비누'</li><li>'러블리앙즈 유아마스크 30매 어린이 3D 새부리형 초소형 소형 4 8세_M9 왕관곰 4 8세 출산/육아 > 유아세제 > 유아세탁비누'</li><li>'네이쳐러브메레 유연제, 리필, 체리블러썸향, 1300ml, 4개 체리블러썸 유연제 4개 오리지널 세제 4개 출산/육아 > 유아세제 > 유아세탁비누'</li></ul> |
71
+ | 1.0 | <ul><li>'레드루트 유아 섬유유연제 세탁세제 1L 3개세트 바닐라코튼 세탁세제 _ 머스크_세탁세제 _ 스위트_유연제 _ 바닐라 출산/육아 > 유아세제 > 유아세탁세제'</li><li>'베비언스 핑크퐁 베이비 세탁세제 리필 2.2L 출산/육아 > 유아세제 > 유아세탁세제'</li><li>'[3개] 아이너바움 대용량 세탁세제 3개세트 무향 / 유아 아기 신생아 비건인증 세제 3.비건인증 안심 세제 3종(세탁2+섬유1)_세탁세제(네이처플라워 2개)_섬유유연제(스윗선데이 1개) 출산/육아 > 유아세제 > 유아세탁세제'</li></ul> |
72
+
73
+ ## Evaluation
74
+
75
+ ### Metrics
76
+ | Label | Accuracy |
77
+ |:--------|:---------|
78
+ | **all** | 1.0 |
79
+
80
+ ## Uses
81
+
82
+ ### Direct Use for Inference
83
+
84
+ First install the SetFit library:
85
+
86
+ ```bash
87
+ pip install setfit
88
+ ```
89
+
90
+ Then you can load this model and run inference.
91
+
92
+ ```python
93
+ from setfit import SetFitModel
94
+
95
+ # Download from the 🤗 Hub
96
+ model = SetFitModel.from_pretrained("mini1013/master_cate_bc23")
97
+ # Run inference
98
+ preds = model("마이비 피부에순한 유아섬유유연제 (리필 1600ml) 출산/육아 > 유아세제 > 유아세탁비누")
99
+ ```
100
+
101
+ <!--
102
+ ### Downstream Use
103
+
104
+ *List how someone could finetune this model on their own dataset.*
105
+ -->
106
+
107
+ <!--
108
+ ### Out-of-Scope Use
109
+
110
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
111
+ -->
112
+
113
+ <!--
114
+ ## Bias, Risks and Limitations
115
+
116
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
117
+ -->
118
+
119
+ <!--
120
+ ### Recommendations
121
+
122
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
123
+ -->
124
+
125
+ ## Training Details
126
+
127
+ ### Training Set Metrics
128
+ | Training set | Min | Median | Max |
129
+ |:-------------|:----|:--------|:----|
130
+ | Word count | 8 | 15.3086 | 31 |
131
+
132
+ | Label | Training Sample Count |
133
+ |:------|:----------------------|
134
+ | 0.0 | 70 |
135
+ | 1.0 | 70 |
136
+ | 2.0 | 70 |
137
+ | 3.0 | 70 |
138
+ | 4.0 | 70 |
139
+
140
+ ### Training Hyperparameters
141
+ - batch_size: (256, 256)
142
+ - num_epochs: (30, 30)
143
+ - max_steps: -1
144
+ - sampling_strategy: oversampling
145
+ - num_iterations: 50
146
+ - body_learning_rate: (2e-05, 1e-05)
147
+ - head_learning_rate: 0.01
148
+ - loss: CosineSimilarityLoss
149
+ - distance_metric: cosine_distance
150
+ - margin: 0.25
151
+ - end_to_end: False
152
+ - use_amp: False
153
+ - warmup_proportion: 0.1
154
+ - l2_weight: 0.01
155
+ - seed: 42
156
+ - eval_max_steps: -1
157
+ - load_best_model_at_end: False
158
+
159
+ ### Training Results
160
+ | Epoch | Step | Training Loss | Validation Loss |
161
+ |:-------:|:----:|:-------------:|:---------------:|
162
+ | 0.0145 | 1 | 0.4811 | - |
163
+ | 0.7246 | 50 | 0.4993 | - |
164
+ | 1.4493 | 100 | 0.4843 | - |
165
+ | 2.1739 | 150 | 0.276 | - |
166
+ | 2.8986 | 200 | 0.0128 | - |
167
+ | 3.6232 | 250 | 0.0 | - |
168
+ | 4.3478 | 300 | 0.0 | - |
169
+ | 5.0725 | 350 | 0.0 | - |
170
+ | 5.7971 | 400 | 0.0 | - |
171
+ | 6.5217 | 450 | 0.0 | - |
172
+ | 7.2464 | 500 | 0.0 | - |
173
+ | 7.9710 | 550 | 0.0 | - |
174
+ | 8.6957 | 600 | 0.0 | - |
175
+ | 9.4203 | 650 | 0.0 | - |
176
+ | 10.1449 | 700 | 0.0 | - |
177
+ | 10.8696 | 750 | 0.0 | - |
178
+ | 11.5942 | 800 | 0.0 | - |
179
+ | 12.3188 | 850 | 0.0 | - |
180
+ | 13.0435 | 900 | 0.0 | - |
181
+ | 13.7681 | 950 | 0.0 | - |
182
+ | 14.4928 | 1000 | 0.0 | - |
183
+ | 15.2174 | 1050 | 0.0 | - |
184
+ | 15.9420 | 1100 | 0.0 | - |
185
+ | 16.6667 | 1150 | 0.0 | - |
186
+ | 17.3913 | 1200 | 0.0 | - |
187
+ | 18.1159 | 1250 | 0.0 | - |
188
+ | 18.8406 | 1300 | 0.0 | - |
189
+ | 19.5652 | 1350 | 0.0 | - |
190
+ | 20.2899 | 1400 | 0.0 | - |
191
+ | 21.0145 | 1450 | 0.0 | - |
192
+ | 21.7391 | 1500 | 0.0 | - |
193
+ | 22.4638 | 1550 | 0.0 | - |
194
+ | 23.1884 | 1600 | 0.0 | - |
195
+ | 23.9130 | 1650 | 0.0 | - |
196
+ | 24.6377 | 1700 | 0.0 | - |
197
+ | 25.3623 | 1750 | 0.0 | - |
198
+ | 26.0870 | 1800 | 0.0 | - |
199
+ | 26.8116 | 1850 | 0.0 | - |
200
+ | 27.5362 | 1900 | 0.0 | - |
201
+ | 28.2609 | 1950 | 0.0 | - |
202
+ | 28.9855 | 2000 | 0.0 | - |
203
+ | 29.7101 | 2050 | 0.0 | - |
204
+
205
+ ### Framework Versions
206
+ - Python: 3.10.12
207
+ - SetFit: 1.1.0
208
+ - Sentence Transformers: 3.3.1
209
+ - Transformers: 4.44.2
210
+ - PyTorch: 2.2.0a0+81ea7a4
211
+ - Datasets: 3.2.0
212
+ - Tokenizers: 0.19.1
213
+
214
+ ## Citation
215
+
216
+ ### BibTeX
217
+ ```bibtex
218
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
219
+ doi = {10.48550/ARXIV.2209.11055},
220
+ url = {https://arxiv.org/abs/2209.11055},
221
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
222
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
223
+ title = {Efficient Few-Shot Learning Without Prompts},
224
+ publisher = {arXiv},
225
+ year = {2022},
226
+ copyright = {Creative Commons Attribution 4.0 International}
227
+ }
228
+ ```
229
+
230
+ <!--
231
+ ## Glossary
232
+
233
+ *Clearly define terms in order to be accessible across audiences.*
234
+ -->
235
+
236
+ <!--
237
+ ## Model Card Authors
238
+
239
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
240
+ -->
241
+
242
+ <!--
243
+ ## Model Card Contact
244
+
245
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
246
+ -->
config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "mini1013/master_item_bc",
3
+ "architectures": [
4
+ "RobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "gradient_checkpointing": false,
11
+ "hidden_act": "gelu",
12
+ "hidden_dropout_prob": 0.1,
13
+ "hidden_size": 768,
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 3072,
16
+ "layer_norm_eps": 1e-05,
17
+ "max_position_embeddings": 514,
18
+ "model_type": "roberta",
19
+ "num_attention_heads": 12,
20
+ "num_hidden_layers": 12,
21
+ "pad_token_id": 1,
22
+ "position_embedding_type": "absolute",
23
+ "tokenizer_class": "BertTokenizer",
24
+ "torch_dtype": "float32",
25
+ "transformers_version": "4.44.2",
26
+ "type_vocab_size": 1,
27
+ "use_cache": true,
28
+ "vocab_size": 32000
29
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.3.1",
4
+ "transformers": "4.44.2",
5
+ "pytorch": "2.2.0a0+81ea7a4"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
config_setfit.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "labels": null,
3
+ "normalize_embeddings": false
4
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:054032711e26a741a86b5521ca801efe3c6a3eca21f371f2c6693d9c9a243ade
3
+ size 442494816
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a611d61133f12013fb0602d76d94134986b265d981ee99325be4b45b4605d802
3
+ size 31615
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "[CLS]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "[SEP]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "[MASK]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "[PAD]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "[SEP]",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[CLS]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "[PAD]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "[SEP]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "[UNK]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "4": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "[CLS]",
45
+ "clean_up_tokenization_spaces": false,
46
+ "cls_token": "[CLS]",
47
+ "do_basic_tokenize": true,
48
+ "do_lower_case": false,
49
+ "eos_token": "[SEP]",
50
+ "mask_token": "[MASK]",
51
+ "max_length": 512,
52
+ "model_max_length": 512,
53
+ "never_split": null,
54
+ "pad_to_multiple_of": null,
55
+ "pad_token": "[PAD]",
56
+ "pad_token_type_id": 0,
57
+ "padding_side": "right",
58
+ "sep_token": "[SEP]",
59
+ "stride": 0,
60
+ "strip_accents": null,
61
+ "tokenize_chinese_chars": true,
62
+ "tokenizer_class": "BertTokenizer",
63
+ "truncation_side": "right",
64
+ "truncation_strategy": "longest_first",
65
+ "unk_token": "[UNK]"
66
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff