File size: 11,383 Bytes
1f3fadd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 |
---
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: 남자 후리스 점퍼 자켓 패딩 가을 겨울 남학생 고등학생 중학생 빅사이즈 3XL E_XXL 출산/육아 > 유아발육용품 > 점퍼루
- text: 부드러운 양말 스타 유아 워커 편안한 국민 미끄럼 신발 아기 부티 보행기 첫 따뜻한 방지 16=B315white_13-18달 출산/육아
> 유아발육용품 > 보행기
- text: 이븐플로 엑서쏘서 트리플펀 아마존 점프앤런 9종 택1 출산선물 조카선물 이븐플로 엑서쏘서_트리플펀 아마존 출산/육아 > 유아발육용품
> 쏘서
- text: 신생아 바운서 유아 용품 흔들 요람 침대 스마트 출산 카키 접이식 표준 엘리트 버전 출산/육아 > 유아발육용품 > 바운서/흔들침대
- text: 아기보행기 O자형 전복방지 카트탑승가능 보행기 4.하늘색 유아교육경음악발매트 출산/육아 > 유아발육용품 > 보행기
metrics:
- accuracy
pipeline_tag: text-classification
library_name: setfit
inference: true
base_model: mini1013/master_domain
model-index:
- name: SetFit with mini1013/master_domain
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Unknown
type: unknown
split: test
metrics:
- type: accuracy
value: 1.0
name: Accuracy
---
# SetFit with mini1013/master_domain
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
## Model Details
### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 512 tokens
- **Number of Classes:** 4 classes
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
### Model Labels
| Label | Examples |
|:------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.0 | <ul><li>'동물 자동차 당김 로프, 조기 교육 선물, 드래그 차량 딸랑이 158447 B2QD2SS901998-6 158447 B2QD2SS901998-4 출산/육아 > 유아발육용품 > 보행기'</li><li>'[대여] [보행기] NEW 뉴 스텝360 다기능 아기보행기 대여 렌탈 ①스텝360_3개월대여 출산/육아 > 유아발육용품 > 보행기'</li><li>'휴대용 접이식 신생아 걸음마 보행기 Egobaby 360 베이비 캐리어 다기능 통기성 유아 백팩 어린이 캐리지 아기 슬링 랩 멜빵 옴니 28 breeze black print 출산/육아 > 유아발육용품 > 보행기'</li></ul> |
| 2.0 | <ul><li>'이븐플로 엑서쏘서 트리플펀 아마존 점프앤런 9종 택1 출산선물 조카선물 이븐플로 엑서쏘서_사파리 친구들 점프&런 출산/육아 > 유아발육용품 > 쏘서'</li><li>'젤리캣 동물 인형 딸랑이 버니 퍼피 양 코끼리 유니콘 5종 유니콘 출산/육아 > 유아발육용품 > 쏘서'</li><li>'[대여][+10일연장] 바로가능 새상품입고 피아노 어라운드 위고 베이비아인슈타인/위고대여 중고판매상품_피아노어라운드위고 출산/육아 > 유아발육용품 > 쏘서'</li></ul> |
| 0.0 | <ul><li>'2021 new 스마트 흔들바운서 진동요람 (B타입)그린 출산/육아 > 유아발육용품 > 바운서/흔들침대'</li><li>'[개봉/미개봉] 베이비뵨 바운서 대여 렌탈 메쉬 저지 코튼 아기 신생아 컨디션A 05. 소프트코튼저지(개봉)_2개월+10일_랜덤발송 출산/육아 > 유아발육용품 > 바운서/흔들침대'</li><li>'[대여][+7일추가/왕복 ] 최신형 크래들스윙대여 피셔프라이스 [베이비노리터] 신형 버튼식 A급+이너시트(당일출고)_블루_한달대여+7일서비스 출산/육아 > 유아발육용품 > 바운서/흔들침대'</li></ul> |
| 3.0 | <ul><li>'여자 어린이 겨울 패딩 후드 잠바 다운 재킷 6. 2중후드 패딩 퍼플화이트_140cm 출산/육아 > 유아발육용품 > 점퍼루'</li><li>'[대여][미개봉새상품대여] 졸리점퍼 오리지널스탠드 슈퍼스탠드 점퍼루 쏘서 슈퍼 스탠드[+7일 추가]_2022입고 한달대여[+7일 추가] 출산/육아 > 유아발육용품 > 점퍼루'</li><li>'경량 패딩점퍼 오버핏 중년 여성롱패딩 빅사이즈 구스다운 퀄팅 롱패딩 블랙_XL 출산/육아 > 유아발육용품 > 점퍼루'</li></ul> |
## Evaluation
### Metrics
| Label | Accuracy |
|:--------|:---------|
| **all** | 1.0 |
## Uses
### Direct Use for Inference
First install the SetFit library:
```bash
pip install setfit
```
Then you can load this model and run inference.
```python
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("mini1013/master_cate_bc22")
# Run inference
preds = model("아기보행기 O자형 전복방지 카트탑승가능 보행기 4.하늘색 유아교육경음악발매트 출산/육아 > 유아발육용품 > 보행기")
```
<!--
### Downstream Use
*List how someone could finetune this model on their own dataset.*
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Set Metrics
| Training set | Min | Median | Max |
|:-------------|:----|:--------|:----|
| Word count | 8 | 15.8643 | 35 |
| Label | Training Sample Count |
|:------|:----------------------|
| 0.0 | 70 |
| 1.0 | 70 |
| 2.0 | 70 |
| 3.0 | 70 |
### Training Hyperparameters
- batch_size: (256, 256)
- num_epochs: (30, 30)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 50
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- l2_weight: 0.01
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
### Training Results
| Epoch | Step | Training Loss | Validation Loss |
|:-------:|:----:|:-------------:|:---------------:|
| 0.0182 | 1 | 0.489 | - |
| 0.9091 | 50 | 0.4696 | - |
| 1.8182 | 100 | 0.1613 | - |
| 2.7273 | 150 | 0.0002 | - |
| 3.6364 | 200 | 0.0 | - |
| 4.5455 | 250 | 0.0 | - |
| 5.4545 | 300 | 0.0 | - |
| 6.3636 | 350 | 0.0 | - |
| 7.2727 | 400 | 0.0 | - |
| 8.1818 | 450 | 0.0 | - |
| 9.0909 | 500 | 0.0 | - |
| 10.0 | 550 | 0.0 | - |
| 10.9091 | 600 | 0.0 | - |
| 11.8182 | 650 | 0.0 | - |
| 12.7273 | 700 | 0.0 | - |
| 13.6364 | 750 | 0.0 | - |
| 14.5455 | 800 | 0.0 | - |
| 15.4545 | 850 | 0.0 | - |
| 16.3636 | 900 | 0.0 | - |
| 17.2727 | 950 | 0.0 | - |
| 18.1818 | 1000 | 0.0 | - |
| 19.0909 | 1050 | 0.0 | - |
| 20.0 | 1100 | 0.0 | - |
| 20.9091 | 1150 | 0.0 | - |
| 21.8182 | 1200 | 0.0 | - |
| 22.7273 | 1250 | 0.0 | - |
| 23.6364 | 1300 | 0.0 | - |
| 24.5455 | 1350 | 0.0 | - |
| 25.4545 | 1400 | 0.0 | - |
| 26.3636 | 1450 | 0.0 | - |
| 27.2727 | 1500 | 0.0 | - |
| 28.1818 | 1550 | 0.0 | - |
| 29.0909 | 1600 | 0.0 | - |
| 30.0 | 1650 | 0.0 | - |
### Framework Versions
- Python: 3.10.12
- SetFit: 1.1.0
- Sentence Transformers: 3.3.1
- Transformers: 4.44.2
- PyTorch: 2.2.0a0+81ea7a4
- Datasets: 3.2.0
- Tokenizers: 0.19.1
## Citation
### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |