mini1013 commited on
Commit
edbcf3a
·
verified ·
1 Parent(s): 5184ff3

Push model using huggingface_hub.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,250 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - setfit
4
+ - sentence-transformers
5
+ - text-classification
6
+ - generated_from_setfit_trainer
7
+ widget:
8
+ - text: 돌반지 백일 호랑이 호랑이띠 목걸이 3.75g 토퍼없음_14k 아기목걸이 기본3푼줄 옐로우골드 출산/육아 > 유아동주얼리 > 순금돌반지
9
+ - text: '[국제금거래소] (순도99.9%) 고급 순금 돌반지 1.875g 복(福)_고급케이스 출산/육아 > 유아동주얼리 > 순금돌반지'
10
+ - text: 베블링 순금 아기 돌팔찌 첫돌 백일 돌선물 3.75g 5.625g 7.5g 11.25g 3.75g_02.Happy 100 Days_국문
11
+ 가는체 출산/육아 > 유아동주얼리 > 순금주얼리
12
+ - text: 별별나라 24k 순금 돌반지 조카 첫돌 아기백일 선물 3.75g 행운의 토끼 돌반지_기본 케이스 출산/육아 > 유아동주얼리 > 순금돌반지
13
+ - text: 바 탄생석 미아방지 실버세트/ 목걸이/ 팔찌 바 탄생석 미아방지 실버목걸이_1월(Garnet)_I타입(영문 우아체) 출산/육아 > 유아동주얼리
14
+ > 주얼리세트
15
+ metrics:
16
+ - accuracy
17
+ pipeline_tag: text-classification
18
+ library_name: setfit
19
+ inference: true
20
+ base_model: mini1013/master_domain
21
+ model-index:
22
+ - name: SetFit with mini1013/master_domain
23
+ results:
24
+ - task:
25
+ type: text-classification
26
+ name: Text Classification
27
+ dataset:
28
+ name: Unknown
29
+ type: unknown
30
+ split: test
31
+ metrics:
32
+ - type: accuracy
33
+ value: 1.0
34
+ name: Accuracy
35
+ ---
36
+
37
+ # SetFit with mini1013/master_domain
38
+
39
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
40
+
41
+ The model has been trained using an efficient few-shot learning technique that involves:
42
+
43
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
44
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
45
+
46
+ ## Model Details
47
+
48
+ ### Model Description
49
+ - **Model Type:** SetFit
50
+ - **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain)
51
+ - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
52
+ - **Maximum Sequence Length:** 512 tokens
53
+ - **Number of Classes:** 6 classes
54
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
55
+ <!-- - **Language:** Unknown -->
56
+ <!-- - **License:** Unknown -->
57
+
58
+ ### Model Sources
59
+
60
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
61
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
62
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
63
+
64
+ ### Model Labels
65
+ | Label | Examples |
66
+ |:------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
67
+ | 0.0 | <ul><li>'핸드메이드 어린이 귀걸이 안아픈 귀찌 실리콘 나사형 진주볼-화이트 출산/육아 > 유아동주얼리 > 귀걸이'</li><li>'초등학생 어린이 귀걸이 귀찌 클립형 나사형 퍼플 큐빅_클립형 귀찌(무니켈) 출산/육아 > 유아동주얼리 > 귀걸이'</li><li>'어린이 초등학생 여아 귀걸이 귀찌 e513-1.미니하트퍼플 드롭_귀찌 출산/육아 > 유아동주얼리 > 귀걸이'</li></ul> |
68
+ | 4.0 | <ul><li>'미니써클 미아방지 실버세트/ 목걸이/ 팔찌 미니써클 미아방지 실버세트_J타입(영문 흘림체)_F타입(영문 바른체) 출산/육아 > 유아동주얼리 > 주얼리세트'</li><li>'겨울왕국2 엘사 눈꽃 목걸이 팔찌 반지 3종세트 출산/육아 > 유아동주얼리 > 주얼리세트'</li><li>'스키니 네모 탄생석 미아방지 실버세트/ 목걸이/ 팔찌 스키니 네모 미아방지 실버세트_1월(Garnet)_H타입(영문 볼드체) 출산/육아 > 유아동주얼리 > 주얼리세트'</li></ul> |
69
+ | 2.0 | <ul><li>'리바스골드 99.9 순금 1g/1.875g/3.75g 돌반지 금수저 순금열쇠 돌팔찌 모음전 09. 돌반지(왕관하트)_1.875g_H. 금박 폴라로이드 액자 패키지 출산/육아 > 유아동주얼리 > 순금돌반지'</li><li>'컷팅 왕관 돌반지 돌팔찌 3.75g 7.5g 11.25g 순금 자개함 보자기포장 백일반지 컷팅 왕관 돌반지 3.75g_백일 남색 리본_고급와당케이스 출산/육아 > 유아동주얼리 > 순금돌반지'</li><li>'호랑이 토끼 띠 밴드 돌반지 3.75g 순금 자개함 아기 백일반지 리본 토끼 3.75g_빨강 수국_안음기본케이스 출산/육아 > 유아동주얼리 > 순금돌반지'</li></ul> |
70
+ | 5.0 | <ul><li>'민트 핑크 하트볼체인 실버 아기미아방지팔찌 3mm볼_빨강+각인함★_14+2 (5-7세) 출산/육아 > 유아동주얼리 > 팔찌'</li><li>'스틱 바 미아방지 목걸이 팔찌 아기 아이 어린이 유아동 실버 순은 팔찌로 제작해주세요_탄생석 2월 출산/육아 > 유아동주얼리 > 팔찌'</li><li>'미아방지팔찌(14K 18K 발도장 돌팔찌 돌선물 백일선물 탄생석) 1860B 3번 고딕체_10월 핑크투어마린_18K / 사다리체인 출산/육아 > 유아동주얼리 > 팔찌'</li></ul> |
71
+ | 3.0 | <ul><li>'순금 돌팔찌 3.75g 7.5g 11.25g 8종 모음전 24k 첫돌 백일 아기 조카 선물 ⑶11.25g_⑴천사날개 출산/육아 > 유아동주얼리 > 순금주얼리'</li><li>'순금 당근 토끼띠 아기 돌목걸이 백일목걸이 3.75g 7.5g (99.9%) 순금 당근 토끼띠 아기목걸이/7.5g_색동 복주머니 팩킹_여자아기 출산/육아 > 유아동주얼리 > 순금주얼리'</li><li>'금수저 책연필 돌팔찌 7.5g 11.25g 18.75g 순금 자개함 포장 백일팔찌 금수저7.5g_첫돌 빨강 리본_고급송학자개케이스 출산/육아 > 유아동주얼리 > 순금주얼리'</li></ul> |
72
+ | 1.0 | <ul><li>'하트 데이지 14k 미아방지목걸이 18k 아기 금목걸이 여아 딸 출산/육아 > 유아동주얼리 > 목걸이/펜던트'</li><li>'실버 미아방지 목걸이 하트 탄생석 아기 돌선물 순은925 어린이날 기념 각인 조카선물 출산/육아 > 유아동주얼리 > 목걸이/펜던트'</li><li>'실버 오목코인 키즈 아기목걸이 미아방지목걸이 출산/육아 > 유아동주얼리 > 목걸이/펜던트'</li></ul> |
73
+
74
+ ## Evaluation
75
+
76
+ ### Metrics
77
+ | Label | Accuracy |
78
+ |:--------|:---------|
79
+ | **all** | 1.0 |
80
+
81
+ ## Uses
82
+
83
+ ### Direct Use for Inference
84
+
85
+ First install the SetFit library:
86
+
87
+ ```bash
88
+ pip install setfit
89
+ ```
90
+
91
+ Then you can load this model and run inference.
92
+
93
+ ```python
94
+ from setfit import SetFitModel
95
+
96
+ # Download from the 🤗 Hub
97
+ model = SetFitModel.from_pretrained("mini1013/master_cate_bc21")
98
+ # Run inference
99
+ preds = model("[국제금거래소] (순도99.9%) 고급 순금 돌반지 1.875g 복(福)_고급케이스 출산/육아 > 유아동주얼리 > 순금돌반지")
100
+ ```
101
+
102
+ <!--
103
+ ### Downstream Use
104
+
105
+ *List how someone could finetune this model on their own dataset.*
106
+ -->
107
+
108
+ <!--
109
+ ### Out-of-Scope Use
110
+
111
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
112
+ -->
113
+
114
+ <!--
115
+ ## Bias, Risks and Limitations
116
+
117
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
118
+ -->
119
+
120
+ <!--
121
+ ### Recommendations
122
+
123
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
124
+ -->
125
+
126
+ ## Training Details
127
+
128
+ ### Training Set Metrics
129
+ | Training set | Min | Median | Max |
130
+ |:-------------|:----|:--------|:----|
131
+ | Word count | 7 | 15.7703 | 32 |
132
+
133
+ | Label | Training Sample Count |
134
+ |:------|:----------------------|
135
+ | 0.0 | 70 |
136
+ | 1.0 | 20 |
137
+ | 2.0 | 70 |
138
+ | 3.0 | 70 |
139
+ | 4.0 | 70 |
140
+ | 5.0 | 70 |
141
+
142
+ ### Training Hyperparameters
143
+ - batch_size: (256, 256)
144
+ - num_epochs: (30, 30)
145
+ - max_steps: -1
146
+ - sampling_strategy: oversampling
147
+ - num_iterations: 50
148
+ - body_learning_rate: (2e-05, 1e-05)
149
+ - head_learning_rate: 0.01
150
+ - loss: CosineSimilarityLoss
151
+ - distance_metric: cosine_distance
152
+ - margin: 0.25
153
+ - end_to_end: False
154
+ - use_amp: False
155
+ - warmup_proportion: 0.1
156
+ - l2_weight: 0.01
157
+ - seed: 42
158
+ - eval_max_steps: -1
159
+ - load_best_model_at_end: False
160
+
161
+ ### Training Results
162
+ | Epoch | Step | Training Loss | Validation Loss |
163
+ |:-------:|:----:|:-------------:|:---------------:|
164
+ | 0.0137 | 1 | 0.4867 | - |
165
+ | 0.6849 | 50 | 0.4987 | - |
166
+ | 1.3699 | 100 | 0.3808 | - |
167
+ | 2.0548 | 150 | 0.1425 | - |
168
+ | 2.7397 | 200 | 0.053 | - |
169
+ | 3.4247 | 250 | 0.0037 | - |
170
+ | 4.1096 | 300 | 0.0001 | - |
171
+ | 4.7945 | 350 | 0.0001 | - |
172
+ | 5.4795 | 400 | 0.0001 | - |
173
+ | 6.1644 | 450 | 0.0001 | - |
174
+ | 6.8493 | 500 | 0.0 | - |
175
+ | 7.5342 | 550 | 0.0 | - |
176
+ | 8.2192 | 600 | 0.0 | - |
177
+ | 8.9041 | 650 | 0.0 | - |
178
+ | 9.5890 | 700 | 0.0 | - |
179
+ | 10.2740 | 750 | 0.0 | - |
180
+ | 10.9589 | 800 | 0.0 | - |
181
+ | 11.6438 | 850 | 0.0 | - |
182
+ | 12.3288 | 900 | 0.0 | - |
183
+ | 13.0137 | 950 | 0.0 | - |
184
+ | 13.6986 | 1000 | 0.0 | - |
185
+ | 14.3836 | 1050 | 0.0 | - |
186
+ | 15.0685 | 1100 | 0.0 | - |
187
+ | 15.7534 | 1150 | 0.0 | - |
188
+ | 16.4384 | 1200 | 0.0 | - |
189
+ | 17.1233 | 1250 | 0.0 | - |
190
+ | 17.8082 | 1300 | 0.0 | - |
191
+ | 18.4932 | 1350 | 0.0 | - |
192
+ | 19.1781 | 1400 | 0.0 | - |
193
+ | 19.8630 | 1450 | 0.0 | - |
194
+ | 20.5479 | 1500 | 0.0 | - |
195
+ | 21.2329 | 1550 | 0.0 | - |
196
+ | 21.9178 | 1600 | 0.0 | - |
197
+ | 22.6027 | 1650 | 0.0 | - |
198
+ | 23.2877 | 1700 | 0.0 | - |
199
+ | 23.9726 | 1750 | 0.0 | - |
200
+ | 24.6575 | 1800 | 0.0 | - |
201
+ | 25.3425 | 1850 | 0.0 | - |
202
+ | 26.0274 | 1900 | 0.0 | - |
203
+ | 26.7123 | 1950 | 0.0 | - |
204
+ | 27.3973 | 2000 | 0.0 | - |
205
+ | 28.0822 | 2050 | 0.0 | - |
206
+ | 28.7671 | 2100 | 0.0 | - |
207
+ | 29.4521 | 2150 | 0.0 | - |
208
+
209
+ ### Framework Versions
210
+ - Python: 3.10.12
211
+ - SetFit: 1.1.0
212
+ - Sentence Transformers: 3.3.1
213
+ - Transformers: 4.44.2
214
+ - PyTorch: 2.2.0a0+81ea7a4
215
+ - Datasets: 3.2.0
216
+ - Tokenizers: 0.19.1
217
+
218
+ ## Citation
219
+
220
+ ### BibTeX
221
+ ```bibtex
222
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
223
+ doi = {10.48550/ARXIV.2209.11055},
224
+ url = {https://arxiv.org/abs/2209.11055},
225
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
226
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
227
+ title = {Efficient Few-Shot Learning Without Prompts},
228
+ publisher = {arXiv},
229
+ year = {2022},
230
+ copyright = {Creative Commons Attribution 4.0 International}
231
+ }
232
+ ```
233
+
234
+ <!--
235
+ ## Glossary
236
+
237
+ *Clearly define terms in order to be accessible across audiences.*
238
+ -->
239
+
240
+ <!--
241
+ ## Model Card Authors
242
+
243
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
244
+ -->
245
+
246
+ <!--
247
+ ## Model Card Contact
248
+
249
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
250
+ -->
config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "mini1013/master_item_bc",
3
+ "architectures": [
4
+ "RobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "gradient_checkpointing": false,
11
+ "hidden_act": "gelu",
12
+ "hidden_dropout_prob": 0.1,
13
+ "hidden_size": 768,
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 3072,
16
+ "layer_norm_eps": 1e-05,
17
+ "max_position_embeddings": 514,
18
+ "model_type": "roberta",
19
+ "num_attention_heads": 12,
20
+ "num_hidden_layers": 12,
21
+ "pad_token_id": 1,
22
+ "position_embedding_type": "absolute",
23
+ "tokenizer_class": "BertTokenizer",
24
+ "torch_dtype": "float32",
25
+ "transformers_version": "4.44.2",
26
+ "type_vocab_size": 1,
27
+ "use_cache": true,
28
+ "vocab_size": 32000
29
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.3.1",
4
+ "transformers": "4.44.2",
5
+ "pytorch": "2.2.0a0+81ea7a4"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
config_setfit.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "labels": null,
3
+ "normalize_embeddings": false
4
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fb68a49a4c366fa2fe7de5d71565380760452bc22ae1cf4cd64f95460537b495
3
+ size 442494816
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d6184a83ea14aa583be94c47eafc6d4630a00fd596054008994081b3545915f6
3
+ size 37767
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "[CLS]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "[SEP]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "[MASK]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "[PAD]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "[SEP]",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[CLS]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "[PAD]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "[SEP]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "[UNK]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "4": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "[CLS]",
45
+ "clean_up_tokenization_spaces": false,
46
+ "cls_token": "[CLS]",
47
+ "do_basic_tokenize": true,
48
+ "do_lower_case": false,
49
+ "eos_token": "[SEP]",
50
+ "mask_token": "[MASK]",
51
+ "max_length": 512,
52
+ "model_max_length": 512,
53
+ "never_split": null,
54
+ "pad_to_multiple_of": null,
55
+ "pad_token": "[PAD]",
56
+ "pad_token_type_id": 0,
57
+ "padding_side": "right",
58
+ "sep_token": "[SEP]",
59
+ "stride": 0,
60
+ "strip_accents": null,
61
+ "tokenize_chinese_chars": true,
62
+ "tokenizer_class": "BertTokenizer",
63
+ "truncation_side": "right",
64
+ "truncation_strategy": "longest_first",
65
+ "unk_token": "[UNK]"
66
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff