Push model using huggingface_hub.
Browse files- 1_Pooling/config.json +10 -0
- README.md +298 -0
- config.json +29 -0
- config_sentence_transformers.json +10 -0
- config_setfit.json +4 -0
- model.safetensors +3 -0
- model_head.pkl +3 -0
- modules.json +14 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +51 -0
- tokenizer.json +0 -0
- tokenizer_config.json +66 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"word_embedding_dimension": 768,
|
| 3 |
+
"pooling_mode_cls_token": false,
|
| 4 |
+
"pooling_mode_mean_tokens": true,
|
| 5 |
+
"pooling_mode_max_tokens": false,
|
| 6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
| 7 |
+
"pooling_mode_weightedmean_tokens": false,
|
| 8 |
+
"pooling_mode_lasttoken": false,
|
| 9 |
+
"include_prompt": true
|
| 10 |
+
}
|
README.md
ADDED
|
@@ -0,0 +1,298 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
tags:
|
| 3 |
+
- setfit
|
| 4 |
+
- sentence-transformers
|
| 5 |
+
- text-classification
|
| 6 |
+
- generated_from_setfit_trainer
|
| 7 |
+
widget:
|
| 8 |
+
- text: 아기 가을 겨울 유아 히트텍 발열내의 실내복 따수웜내의(바로배송)_크림_XL(11호) 출산/육아 > 유아동언더웨어/잠옷 > 내의/내복
|
| 9 |
+
- text: BYC 핑크퐁 아기상어 누빔 맨투맨스타일 유아홈라운지상하 SHK0012 노랑(YE)_24M 출산/육아 > 유아동언더웨어/잠옷 > 잠옷/홈웨어
|
| 10 |
+
- text: 피카부 봄 여름 가을 겨울 실내복 신생아 키즈 배앓이 츄츄 첵첵 오오 달콤 다온 라온 피카부 다온세트_코코아_XS 출산/육아 > 유아동언더웨어/잠옷
|
| 11 |
+
> 내의/내복
|
| 12 |
+
- text: 유아동잠옷 상하세트 긴팔 밍크 부드러운 수면잠옷 어린이집 잠옷파티 아동 흰둥이 도형실내복 도형_블루_75 출산/육아 > 유아동언더웨어/잠옷
|
| 13 |
+
> 잠옷/홈웨어
|
| 14 |
+
- text: 아동 밍크 잠옷 세트 강아지 스마일 상하세트 밍크원단 울트라원단 수면잠옷 파자마 실내복 주니어 겨울 홈웨어 파자마파티 선물 03.뉴아동밍크왕관_네이비_65
|
| 15 |
+
출산/육아 > 유아동언더웨어/잠옷 > 잠옷/홈웨어
|
| 16 |
+
metrics:
|
| 17 |
+
- accuracy
|
| 18 |
+
pipeline_tag: text-classification
|
| 19 |
+
library_name: setfit
|
| 20 |
+
inference: true
|
| 21 |
+
base_model: mini1013/master_domain
|
| 22 |
+
model-index:
|
| 23 |
+
- name: SetFit with mini1013/master_domain
|
| 24 |
+
results:
|
| 25 |
+
- task:
|
| 26 |
+
type: text-classification
|
| 27 |
+
name: Text Classification
|
| 28 |
+
dataset:
|
| 29 |
+
name: Unknown
|
| 30 |
+
type: unknown
|
| 31 |
+
split: test
|
| 32 |
+
metrics:
|
| 33 |
+
- type: accuracy
|
| 34 |
+
value: 1.0
|
| 35 |
+
name: Accuracy
|
| 36 |
+
---
|
| 37 |
+
|
| 38 |
+
# SetFit with mini1013/master_domain
|
| 39 |
+
|
| 40 |
+
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
|
| 41 |
+
|
| 42 |
+
The model has been trained using an efficient few-shot learning technique that involves:
|
| 43 |
+
|
| 44 |
+
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
|
| 45 |
+
2. Training a classification head with features from the fine-tuned Sentence Transformer.
|
| 46 |
+
|
| 47 |
+
## Model Details
|
| 48 |
+
|
| 49 |
+
### Model Description
|
| 50 |
+
- **Model Type:** SetFit
|
| 51 |
+
- **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain)
|
| 52 |
+
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
|
| 53 |
+
- **Maximum Sequence Length:** 512 tokens
|
| 54 |
+
- **Number of Classes:** 10 classes
|
| 55 |
+
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
|
| 56 |
+
<!-- - **Language:** Unknown -->
|
| 57 |
+
<!-- - **License:** Unknown -->
|
| 58 |
+
|
| 59 |
+
### Model Sources
|
| 60 |
+
|
| 61 |
+
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
|
| 62 |
+
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
|
| 63 |
+
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
|
| 64 |
+
|
| 65 |
+
### Model Labels
|
| 66 |
+
| Label | Examples |
|
| 67 |
+
|:------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
| 68 |
+
| 9.0 | <ul><li>'남아 여아 아동 주니어 드로즈 사각 팬티 속옷 5종 세트 여아_13_베리 WPS-945_90 출산/육아 > 유아동언더웨어/잠옷 > 팬티'</li><li>'캐치티니핑 산리오 시크릿쥬쥬 엘사 유아 여아 남아 시나모롤 마이멜로디 피카츄 드로즈 팬티 S03.마이멜로디 팬티(3종)_마이멜로디 팬티_80호(11~12세) 출산/육아 > 유아동언더웨어/잠옷 > 팬티'</li><li>'[탑텐키즈](신세계김해점) 23년 S/S (남,여아) 코튼 팬티 세트 (2매입) 2종 택1 (MKD5UP1001/MKD5UP2001) GNP(그린공룡)_65 출산/육아 > 유아동언더웨어/잠옷 > 팬티'</li></ul> |
|
| 69 |
+
| 6.0 | <ul><li>'아동바지 셔링 여아속바지 아동잠옷 아동실내복 블랙_15호 출산/육아 > 유아동언더웨어/잠옷 > 속치마/속바지'</li><li>'per1101 티셔츠 유지 키즈 유아레깅스 속바지 2p세트 아동바지속치마 기본속치마 유복 블랙2p_19호 출산/육아 > 유아동언더웨어/잠옷 > 속치마/속바지'</li><li>'스판 속바지 키즈 여아 4부 5부 이너 레깅스 도비레깅스(4부)_그레이_XL 출산/육아 > 유아동언더웨어/잠옷 > 속치마/속바지'</li></ul> |
|
| 70 |
+
| 5.0 | <ul><li>'HY 주니어 스포츠 1단계 브라팬티세트 주니어속옷 80A/XL 핑크 출산/육아 > 유아동언더웨어/잠옷 > 브라팬티세트'</li><li>'성장기 여아 브라세트 초등 청소년 주니어 속옷세트 선택01.위니 브라팬티(4961/ 1204)_베이지_55(L)/100(XL) 출산/육아 > 유아동언더웨어/잠옷 > 브라팬티세트'</li><li>'모아천일 2단계 주니어 노와이어 브라팬티 노몰드 세트 A컵 주니어이너웨어 75A/L 베이지 출산/육아 > 유아동언더웨어/잠옷 > 브라팬티세트'</li></ul> |
|
| 71 |
+
| 2.0 | <ul><li>'사계절 초극세사 속바지 사각팬티 L(90)_스킨 출산/육아 > 유아동언더웨어/잠옷 > 러닝팬티세트'</li><li>'자연섬유 학생 가벼운 속바지 3부 성인팬티 10대여자속옷 XL(95)_블랙 출산/육아 > 유아동언더웨어/잠옷 > 러닝팬티세트'</li><li>'[2021] 상어핑크 여아 면스판 속옷 (런닝 사각 삼각 선택) 삼각 80호 (11~12세) 출산/육아 > 유아동언더웨어/잠옷 > 러닝팬티세트'</li></ul> |
|
| 72 |
+
| 8.0 | <ul><li>'[삐삐롱]가을맞이 신상 9부 잠옷 파자마 남아 여아 파자마파티 어린이집 13_팝베어 좌우사편면_80 출산/육아 > 유아동언더웨어/잠옷 > 잠옷/홈웨어'</li><li>'국내 면 주니어 아동잠옷 여아 남아 유아 초등학생 키즈 파자마파티 레브마인 반팔 상하 세트_70_스위트야미 여아_85 출산/육아 > 유아동언더웨어/잠옷 > 잠옷/홈웨어'</li><li>'무냐무냐GFM남홈웨어긴팔세트07 MDGBBMJF15 80 출산/육아 > 유아동언더웨어/잠옷 > 잠옷/홈웨어'</li></ul> |
|
| 73 |
+
| 3.0 | <ul><li>'순면 배변 훈련 팬티 (2장 1세트) 203575 아기배변팬티 유아배변팬티 D상어M 출산/육아 > 유아동언더웨어/잠옷 > 배변훈련팬티'</li><li>'[씨엘스토리] 캐릭터 아동팬티 런닝 남아 여아 세트 타요 뽀로로 슈퍼잭 13_타요 여아런닝_75 출산/육아 > 유아동언더웨어/잠옷 > 배변훈련팬티'</li><li>'Per1109 유아 아기 중 3장1세트 단색파스텔팬티 남아 여아 204917 펀칭팬티 옐로우90 출산/육아 > 유아동언더웨어/잠옷 > 배변훈련팬티'</li></ul> |
|
| 74 |
+
| 1.0 | <ul><li>'유아 민소매 나시 아기 밤부런닝 1+1 07_틴트 밤부 무형광 런닝_04_체키 밤부 무형광 런닝_120호 출산/육아 > 유아동언더웨어/잠옷 > 러닝'</li><li>'[무냐무냐](신세계김해점)[주니어관] HFM여주텐셀모달브라101 70호 출산/육아 > 유아동언더웨어/잠옷 > 러닝'</li><li>'[삐삐롱]23S신상 사계절 무형광 여아 런닝 팬티 드로즈 반팔티 모음전 06_체리키티_롱드로즈 면스판_65 출산/육아 > 유아동언더웨어/잠옷 > 러닝'</li></ul> |
|
| 75 |
+
| 4.0 | <ul><li>'주니어 여학생 여아 브라 속옷 순면 1 2 3 단계 초등 중 고등 학생 스포츠 런닝브라 1단계_17_런닝브라 GSR1525_팬티 / 90 출산/육아 > 유아동언더웨어/잠옷 > 브라'</li><li>'주니어 브라 스포츠브라 초등 학생 브라 속옷 어린이 브래지어 1단계 런닝_BB100_텐셀(6620) 화이트 2XL 95 출산/육아 > 유아동언더웨어/잠옷 > 브라'</li><li>'여아 여름 초딩브라 2단계 노푸쉬 A컵 75A_그레이 출산/육아 > 유아동언더웨어/잠옷 > 브라'</li></ul> |
|
| 76 |
+
| 0.0 | <ul><li>'피카부 실내복 유아 아기 키즈 신생아 가을 여자 아기옷 남자 아동내복세트 PK 뉴모달세트(실내복상하)_민트_S (유아복 5호 12-14kg) 출산/육아 > 유아동언더웨어/잠옷 > 내의/내복'</li><li>'피카부 유아 아기 실내복 크리스마스 내복 키즈 기모 신생아 내의 봄 여름 가을 겨울 ★BEST★츄츄세트(슬림핏)_진회색_XL 출산/육아 > 유아동언더웨어/잠옷 > 내의/내복'</li><li>'피카부 실내복 가을 겨울 봄 돌아기 유아 내복 이든세트_브라운_XS 출산/육아 > 유아동언더웨어/잠옷 > 내의/내복'</li></ul> |
|
| 77 |
+
| 7.0 | <ul><li>'유아 부들부들 밍크털 겨울 아기수면조끼 수면가디건 몽몽 구름수면조끼_핑크_2XL 출산/육아 > 유아동언더웨어/잠옷 > 수면조끼'</li><li>'사계절 아기 수면조끼 실내 유아 신생아 겨울 수면조끼 25종 작은곰 수면조끼_베이지_XL 출산/육아 > 유아동언더웨어/잠옷 > 수면조끼'</li><li>'아기 수면조끼 아동 실내조끼 여아 남아 보온 가을 겨울 간절기 돌아기 누빔조끼 수면잠옷 4) 보아털 반조끼_1-6) 민트_11호(4~5세) 출산/육아 > 유아동언더웨어/잠옷 > 수면조끼'</li></ul> |
|
| 78 |
+
|
| 79 |
+
## Evaluation
|
| 80 |
+
|
| 81 |
+
### Metrics
|
| 82 |
+
| Label | Accuracy |
|
| 83 |
+
|:--------|:---------|
|
| 84 |
+
| **all** | 1.0 |
|
| 85 |
+
|
| 86 |
+
## Uses
|
| 87 |
+
|
| 88 |
+
### Direct Use for Inference
|
| 89 |
+
|
| 90 |
+
First install the SetFit library:
|
| 91 |
+
|
| 92 |
+
```bash
|
| 93 |
+
pip install setfit
|
| 94 |
+
```
|
| 95 |
+
|
| 96 |
+
Then you can load this model and run inference.
|
| 97 |
+
|
| 98 |
+
```python
|
| 99 |
+
from setfit import SetFitModel
|
| 100 |
+
|
| 101 |
+
# Download from the 🤗 Hub
|
| 102 |
+
model = SetFitModel.from_pretrained("mini1013/master_cate_bc18")
|
| 103 |
+
# Run inference
|
| 104 |
+
preds = model("아기 가을 겨울 유아 히트텍 발열내의 실내복 따수웜내의(바로배송)_크림_XL(11호) 출산/육아 > 유아동언더웨어/잠옷 > 내의/내복")
|
| 105 |
+
```
|
| 106 |
+
|
| 107 |
+
<!--
|
| 108 |
+
### Downstream Use
|
| 109 |
+
|
| 110 |
+
*List how someone could finetune this model on their own dataset.*
|
| 111 |
+
-->
|
| 112 |
+
|
| 113 |
+
<!--
|
| 114 |
+
### Out-of-Scope Use
|
| 115 |
+
|
| 116 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
| 117 |
+
-->
|
| 118 |
+
|
| 119 |
+
<!--
|
| 120 |
+
## Bias, Risks and Limitations
|
| 121 |
+
|
| 122 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
| 123 |
+
-->
|
| 124 |
+
|
| 125 |
+
<!--
|
| 126 |
+
### Recommendations
|
| 127 |
+
|
| 128 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
| 129 |
+
-->
|
| 130 |
+
|
| 131 |
+
## Training Details
|
| 132 |
+
|
| 133 |
+
### Training Set Metrics
|
| 134 |
+
| Training set | Min | Median | Max |
|
| 135 |
+
|:-------------|:----|:--------|:----|
|
| 136 |
+
| Word count | 7 | 15.4771 | 28 |
|
| 137 |
+
|
| 138 |
+
| Label | Training Sample Count |
|
| 139 |
+
|:------|:----------------------|
|
| 140 |
+
| 0.0 | 70 |
|
| 141 |
+
| 1.0 | 70 |
|
| 142 |
+
| 2.0 | 70 |
|
| 143 |
+
| 3.0 | 70 |
|
| 144 |
+
| 4.0 | 70 |
|
| 145 |
+
| 5.0 | 70 |
|
| 146 |
+
| 6.0 | 70 |
|
| 147 |
+
| 7.0 | 70 |
|
| 148 |
+
| 8.0 | 70 |
|
| 149 |
+
| 9.0 | 70 |
|
| 150 |
+
|
| 151 |
+
### Training Hyperparameters
|
| 152 |
+
- batch_size: (256, 256)
|
| 153 |
+
- num_epochs: (30, 30)
|
| 154 |
+
- max_steps: -1
|
| 155 |
+
- sampling_strategy: oversampling
|
| 156 |
+
- num_iterations: 50
|
| 157 |
+
- body_learning_rate: (2e-05, 1e-05)
|
| 158 |
+
- head_learning_rate: 0.01
|
| 159 |
+
- loss: CosineSimilarityLoss
|
| 160 |
+
- distance_metric: cosine_distance
|
| 161 |
+
- margin: 0.25
|
| 162 |
+
- end_to_end: False
|
| 163 |
+
- use_amp: False
|
| 164 |
+
- warmup_proportion: 0.1
|
| 165 |
+
- l2_weight: 0.01
|
| 166 |
+
- seed: 42
|
| 167 |
+
- eval_max_steps: -1
|
| 168 |
+
- load_best_model_at_end: False
|
| 169 |
+
|
| 170 |
+
### Training Results
|
| 171 |
+
| Epoch | Step | Training Loss | Validation Loss |
|
| 172 |
+
|:-------:|:----:|:-------------:|:---------------:|
|
| 173 |
+
| 0.0073 | 1 | 0.4833 | - |
|
| 174 |
+
| 0.3650 | 50 | 0.4883 | - |
|
| 175 |
+
| 0.7299 | 100 | 0.3506 | - |
|
| 176 |
+
| 1.0949 | 150 | 0.1976 | - |
|
| 177 |
+
| 1.4599 | 200 | 0.119 | - |
|
| 178 |
+
| 1.8248 | 250 | 0.089 | - |
|
| 179 |
+
| 2.1898 | 300 | 0.0664 | - |
|
| 180 |
+
| 2.5547 | 350 | 0.0492 | - |
|
| 181 |
+
| 2.9197 | 400 | 0.018 | - |
|
| 182 |
+
| 3.2847 | 450 | 0.012 | - |
|
| 183 |
+
| 3.6496 | 500 | 0.0084 | - |
|
| 184 |
+
| 4.0146 | 550 | 0.0005 | - |
|
| 185 |
+
| 4.3796 | 600 | 0.0003 | - |
|
| 186 |
+
| 4.7445 | 650 | 0.0002 | - |
|
| 187 |
+
| 5.1095 | 700 | 0.0002 | - |
|
| 188 |
+
| 5.4745 | 750 | 0.0002 | - |
|
| 189 |
+
| 5.8394 | 800 | 0.0001 | - |
|
| 190 |
+
| 6.2044 | 850 | 0.0001 | - |
|
| 191 |
+
| 6.5693 | 900 | 0.0001 | - |
|
| 192 |
+
| 6.9343 | 950 | 0.0001 | - |
|
| 193 |
+
| 7.2993 | 1000 | 0.0001 | - |
|
| 194 |
+
| 7.6642 | 1050 | 0.0001 | - |
|
| 195 |
+
| 8.0292 | 1100 | 0.0001 | - |
|
| 196 |
+
| 8.3942 | 1150 | 0.0001 | - |
|
| 197 |
+
| 8.7591 | 1200 | 0.0001 | - |
|
| 198 |
+
| 9.1241 | 1250 | 0.0001 | - |
|
| 199 |
+
| 9.4891 | 1300 | 0.0001 | - |
|
| 200 |
+
| 9.8540 | 1350 | 0.0001 | - |
|
| 201 |
+
| 10.2190 | 1400 | 0.0001 | - |
|
| 202 |
+
| 10.5839 | 1450 | 0.0001 | - |
|
| 203 |
+
| 10.9489 | 1500 | 0.0001 | - |
|
| 204 |
+
| 11.3139 | 1550 | 0.0001 | - |
|
| 205 |
+
| 11.6788 | 1600 | 0.0001 | - |
|
| 206 |
+
| 12.0438 | 1650 | 0.0001 | - |
|
| 207 |
+
| 12.4088 | 1700 | 0.0 | - |
|
| 208 |
+
| 12.7737 | 1750 | 0.0 | - |
|
| 209 |
+
| 13.1387 | 1800 | 0.0 | - |
|
| 210 |
+
| 13.5036 | 1850 | 0.0 | - |
|
| 211 |
+
| 13.8686 | 1900 | 0.0 | - |
|
| 212 |
+
| 14.2336 | 1950 | 0.0 | - |
|
| 213 |
+
| 14.5985 | 2000 | 0.0 | - |
|
| 214 |
+
| 14.9635 | 2050 | 0.0 | - |
|
| 215 |
+
| 15.3285 | 2100 | 0.0 | - |
|
| 216 |
+
| 15.6934 | 2150 | 0.0 | - |
|
| 217 |
+
| 16.0584 | 2200 | 0.0 | - |
|
| 218 |
+
| 16.4234 | 2250 | 0.0 | - |
|
| 219 |
+
| 16.7883 | 2300 | 0.0 | - |
|
| 220 |
+
| 17.1533 | 2350 | 0.0 | - |
|
| 221 |
+
| 17.5182 | 2400 | 0.0 | - |
|
| 222 |
+
| 17.8832 | 2450 | 0.0 | - |
|
| 223 |
+
| 18.2482 | 2500 | 0.0 | - |
|
| 224 |
+
| 18.6131 | 2550 | 0.0 | - |
|
| 225 |
+
| 18.9781 | 2600 | 0.0 | - |
|
| 226 |
+
| 19.3431 | 2650 | 0.0 | - |
|
| 227 |
+
| 19.7080 | 2700 | 0.0 | - |
|
| 228 |
+
| 20.0730 | 2750 | 0.0 | - |
|
| 229 |
+
| 20.4380 | 2800 | 0.0 | - |
|
| 230 |
+
| 20.8029 | 2850 | 0.0 | - |
|
| 231 |
+
| 21.1679 | 2900 | 0.0012 | - |
|
| 232 |
+
| 21.5328 | 2950 | 0.0001 | - |
|
| 233 |
+
| 21.8978 | 3000 | 0.0 | - |
|
| 234 |
+
| 22.2628 | 3050 | 0.0 | - |
|
| 235 |
+
| 22.6277 | 3100 | 0.0 | - |
|
| 236 |
+
| 22.9927 | 3150 | 0.0 | - |
|
| 237 |
+
| 23.3577 | 3200 | 0.0 | - |
|
| 238 |
+
| 23.7226 | 3250 | 0.0 | - |
|
| 239 |
+
| 24.0876 | 3300 | 0.0 | - |
|
| 240 |
+
| 24.4526 | 3350 | 0.0 | - |
|
| 241 |
+
| 24.8175 | 3400 | 0.0 | - |
|
| 242 |
+
| 25.1825 | 3450 | 0.0 | - |
|
| 243 |
+
| 25.5474 | 3500 | 0.0 | - |
|
| 244 |
+
| 25.9124 | 3550 | 0.0 | - |
|
| 245 |
+
| 26.2774 | 3600 | 0.0 | - |
|
| 246 |
+
| 26.6423 | 3650 | 0.0 | - |
|
| 247 |
+
| 27.0073 | 3700 | 0.0 | - |
|
| 248 |
+
| 27.3723 | 3750 | 0.0 | - |
|
| 249 |
+
| 27.7372 | 3800 | 0.0 | - |
|
| 250 |
+
| 28.1022 | 3850 | 0.0 | - |
|
| 251 |
+
| 28.4672 | 3900 | 0.0 | - |
|
| 252 |
+
| 28.8321 | 3950 | 0.0 | - |
|
| 253 |
+
| 29.1971 | 4000 | 0.0 | - |
|
| 254 |
+
| 29.5620 | 4050 | 0.0 | - |
|
| 255 |
+
| 29.9270 | 4100 | 0.0 | - |
|
| 256 |
+
|
| 257 |
+
### Framework Versions
|
| 258 |
+
- Python: 3.10.12
|
| 259 |
+
- SetFit: 1.1.0
|
| 260 |
+
- Sentence Transformers: 3.3.1
|
| 261 |
+
- Transformers: 4.44.2
|
| 262 |
+
- PyTorch: 2.2.0a0+81ea7a4
|
| 263 |
+
- Datasets: 3.2.0
|
| 264 |
+
- Tokenizers: 0.19.1
|
| 265 |
+
|
| 266 |
+
## Citation
|
| 267 |
+
|
| 268 |
+
### BibTeX
|
| 269 |
+
```bibtex
|
| 270 |
+
@article{https://doi.org/10.48550/arxiv.2209.11055,
|
| 271 |
+
doi = {10.48550/ARXIV.2209.11055},
|
| 272 |
+
url = {https://arxiv.org/abs/2209.11055},
|
| 273 |
+
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
|
| 274 |
+
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
| 275 |
+
title = {Efficient Few-Shot Learning Without Prompts},
|
| 276 |
+
publisher = {arXiv},
|
| 277 |
+
year = {2022},
|
| 278 |
+
copyright = {Creative Commons Attribution 4.0 International}
|
| 279 |
+
}
|
| 280 |
+
```
|
| 281 |
+
|
| 282 |
+
<!--
|
| 283 |
+
## Glossary
|
| 284 |
+
|
| 285 |
+
*Clearly define terms in order to be accessible across audiences.*
|
| 286 |
+
-->
|
| 287 |
+
|
| 288 |
+
<!--
|
| 289 |
+
## Model Card Authors
|
| 290 |
+
|
| 291 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
| 292 |
+
-->
|
| 293 |
+
|
| 294 |
+
<!--
|
| 295 |
+
## Model Card Contact
|
| 296 |
+
|
| 297 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
| 298 |
+
-->
|
config.json
ADDED
|
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_name_or_path": "mini1013/master_item_bc",
|
| 3 |
+
"architectures": [
|
| 4 |
+
"RobertaModel"
|
| 5 |
+
],
|
| 6 |
+
"attention_probs_dropout_prob": 0.1,
|
| 7 |
+
"bos_token_id": 0,
|
| 8 |
+
"classifier_dropout": null,
|
| 9 |
+
"eos_token_id": 2,
|
| 10 |
+
"gradient_checkpointing": false,
|
| 11 |
+
"hidden_act": "gelu",
|
| 12 |
+
"hidden_dropout_prob": 0.1,
|
| 13 |
+
"hidden_size": 768,
|
| 14 |
+
"initializer_range": 0.02,
|
| 15 |
+
"intermediate_size": 3072,
|
| 16 |
+
"layer_norm_eps": 1e-05,
|
| 17 |
+
"max_position_embeddings": 514,
|
| 18 |
+
"model_type": "roberta",
|
| 19 |
+
"num_attention_heads": 12,
|
| 20 |
+
"num_hidden_layers": 12,
|
| 21 |
+
"pad_token_id": 1,
|
| 22 |
+
"position_embedding_type": "absolute",
|
| 23 |
+
"tokenizer_class": "BertTokenizer",
|
| 24 |
+
"torch_dtype": "float32",
|
| 25 |
+
"transformers_version": "4.44.2",
|
| 26 |
+
"type_vocab_size": 1,
|
| 27 |
+
"use_cache": true,
|
| 28 |
+
"vocab_size": 32000
|
| 29 |
+
}
|
config_sentence_transformers.json
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"__version__": {
|
| 3 |
+
"sentence_transformers": "3.3.1",
|
| 4 |
+
"transformers": "4.44.2",
|
| 5 |
+
"pytorch": "2.2.0a0+81ea7a4"
|
| 6 |
+
},
|
| 7 |
+
"prompts": {},
|
| 8 |
+
"default_prompt_name": null,
|
| 9 |
+
"similarity_fn_name": "cosine"
|
| 10 |
+
}
|
config_setfit.json
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"labels": null,
|
| 3 |
+
"normalize_embeddings": false
|
| 4 |
+
}
|
model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ae8cdd20c66aa4e98619039c87ce37dd3aa221cf6f63f4d420757ebbe1d0f0f7
|
| 3 |
+
size 442494816
|
model_head.pkl
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:bbae341b789b35a8f0104b7977c47ce8fcb33d59428abfc7c5400e83c3f7c3a6
|
| 3 |
+
size 62407
|
modules.json
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[
|
| 2 |
+
{
|
| 3 |
+
"idx": 0,
|
| 4 |
+
"name": "0",
|
| 5 |
+
"path": "",
|
| 6 |
+
"type": "sentence_transformers.models.Transformer"
|
| 7 |
+
},
|
| 8 |
+
{
|
| 9 |
+
"idx": 1,
|
| 10 |
+
"name": "1",
|
| 11 |
+
"path": "1_Pooling",
|
| 12 |
+
"type": "sentence_transformers.models.Pooling"
|
| 13 |
+
}
|
| 14 |
+
]
|
sentence_bert_config.json
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"max_seq_length": 512,
|
| 3 |
+
"do_lower_case": false
|
| 4 |
+
}
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token": {
|
| 3 |
+
"content": "[CLS]",
|
| 4 |
+
"lstrip": false,
|
| 5 |
+
"normalized": false,
|
| 6 |
+
"rstrip": false,
|
| 7 |
+
"single_word": false
|
| 8 |
+
},
|
| 9 |
+
"cls_token": {
|
| 10 |
+
"content": "[CLS]",
|
| 11 |
+
"lstrip": false,
|
| 12 |
+
"normalized": false,
|
| 13 |
+
"rstrip": false,
|
| 14 |
+
"single_word": false
|
| 15 |
+
},
|
| 16 |
+
"eos_token": {
|
| 17 |
+
"content": "[SEP]",
|
| 18 |
+
"lstrip": false,
|
| 19 |
+
"normalized": false,
|
| 20 |
+
"rstrip": false,
|
| 21 |
+
"single_word": false
|
| 22 |
+
},
|
| 23 |
+
"mask_token": {
|
| 24 |
+
"content": "[MASK]",
|
| 25 |
+
"lstrip": false,
|
| 26 |
+
"normalized": false,
|
| 27 |
+
"rstrip": false,
|
| 28 |
+
"single_word": false
|
| 29 |
+
},
|
| 30 |
+
"pad_token": {
|
| 31 |
+
"content": "[PAD]",
|
| 32 |
+
"lstrip": false,
|
| 33 |
+
"normalized": false,
|
| 34 |
+
"rstrip": false,
|
| 35 |
+
"single_word": false
|
| 36 |
+
},
|
| 37 |
+
"sep_token": {
|
| 38 |
+
"content": "[SEP]",
|
| 39 |
+
"lstrip": false,
|
| 40 |
+
"normalized": false,
|
| 41 |
+
"rstrip": false,
|
| 42 |
+
"single_word": false
|
| 43 |
+
},
|
| 44 |
+
"unk_token": {
|
| 45 |
+
"content": "[UNK]",
|
| 46 |
+
"lstrip": false,
|
| 47 |
+
"normalized": false,
|
| 48 |
+
"rstrip": false,
|
| 49 |
+
"single_word": false
|
| 50 |
+
}
|
| 51 |
+
}
|
tokenizer.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"added_tokens_decoder": {
|
| 3 |
+
"0": {
|
| 4 |
+
"content": "[CLS]",
|
| 5 |
+
"lstrip": false,
|
| 6 |
+
"normalized": false,
|
| 7 |
+
"rstrip": false,
|
| 8 |
+
"single_word": false,
|
| 9 |
+
"special": true
|
| 10 |
+
},
|
| 11 |
+
"1": {
|
| 12 |
+
"content": "[PAD]",
|
| 13 |
+
"lstrip": false,
|
| 14 |
+
"normalized": false,
|
| 15 |
+
"rstrip": false,
|
| 16 |
+
"single_word": false,
|
| 17 |
+
"special": true
|
| 18 |
+
},
|
| 19 |
+
"2": {
|
| 20 |
+
"content": "[SEP]",
|
| 21 |
+
"lstrip": false,
|
| 22 |
+
"normalized": false,
|
| 23 |
+
"rstrip": false,
|
| 24 |
+
"single_word": false,
|
| 25 |
+
"special": true
|
| 26 |
+
},
|
| 27 |
+
"3": {
|
| 28 |
+
"content": "[UNK]",
|
| 29 |
+
"lstrip": false,
|
| 30 |
+
"normalized": false,
|
| 31 |
+
"rstrip": false,
|
| 32 |
+
"single_word": false,
|
| 33 |
+
"special": true
|
| 34 |
+
},
|
| 35 |
+
"4": {
|
| 36 |
+
"content": "[MASK]",
|
| 37 |
+
"lstrip": false,
|
| 38 |
+
"normalized": false,
|
| 39 |
+
"rstrip": false,
|
| 40 |
+
"single_word": false,
|
| 41 |
+
"special": true
|
| 42 |
+
}
|
| 43 |
+
},
|
| 44 |
+
"bos_token": "[CLS]",
|
| 45 |
+
"clean_up_tokenization_spaces": false,
|
| 46 |
+
"cls_token": "[CLS]",
|
| 47 |
+
"do_basic_tokenize": true,
|
| 48 |
+
"do_lower_case": false,
|
| 49 |
+
"eos_token": "[SEP]",
|
| 50 |
+
"mask_token": "[MASK]",
|
| 51 |
+
"max_length": 512,
|
| 52 |
+
"model_max_length": 512,
|
| 53 |
+
"never_split": null,
|
| 54 |
+
"pad_to_multiple_of": null,
|
| 55 |
+
"pad_token": "[PAD]",
|
| 56 |
+
"pad_token_type_id": 0,
|
| 57 |
+
"padding_side": "right",
|
| 58 |
+
"sep_token": "[SEP]",
|
| 59 |
+
"stride": 0,
|
| 60 |
+
"strip_accents": null,
|
| 61 |
+
"tokenize_chinese_chars": true,
|
| 62 |
+
"tokenizer_class": "BertTokenizer",
|
| 63 |
+
"truncation_side": "right",
|
| 64 |
+
"truncation_strategy": "longest_first",
|
| 65 |
+
"unk_token": "[UNK]"
|
| 66 |
+
}
|
vocab.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|