mini1013 commited on
Commit
033e651
·
verified ·
1 Parent(s): 1525317

Push model using huggingface_hub.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,226 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - setfit
4
+ - sentence-transformers
5
+ - text-classification
6
+ - generated_from_setfit_trainer
7
+ widget:
8
+ - text: '[매일유업]요미요미 유기농 쌀떡뻥 시금치와브로콜리30g 한팩골라담기 쌀과자 초록1단계(6개월 이후) 25g 출산/육아 > 아기간식
9
+ > 유아과자'
10
+ - text: 팔도 뽀로로 밀크맛 235ml 1개입 대페트_칠성 제로 사이다 1.5L 12개입 출산/육아 > 아기간식 > 유아음료
11
+ - text: '[맛있는풍경] 유기농 쌀스틱 떡뻥 요거트볼 유아과자 어린이간식 11. 유기농 요거트 블루베리 출산/육아 > 아기간식 > 유아과자'
12
+ - text: 팔도 뽀로로 딸기맛 235ml 12개 팩음료_JARDIN 로얄 헤이즐넛 230ml 20개 출산/육아 > 아기간식 > 유아음료
13
+ - text: '[베베당] 유기농 아기과자 아이 간식 떡뻥 쌀과자 롱 스틱 팝 요거트 치즈 과일칩 10+3 10. 유기농 현미스틱 브로콜리30g 출산/육아
14
+ > 아기간식 > 유아과자'
15
+ metrics:
16
+ - accuracy
17
+ pipeline_tag: text-classification
18
+ library_name: setfit
19
+ inference: true
20
+ base_model: mini1013/master_domain
21
+ model-index:
22
+ - name: SetFit with mini1013/master_domain
23
+ results:
24
+ - task:
25
+ type: text-classification
26
+ name: Text Classification
27
+ dataset:
28
+ name: Unknown
29
+ type: unknown
30
+ split: test
31
+ metrics:
32
+ - type: accuracy
33
+ value: 0.9978471474703983
34
+ name: Accuracy
35
+ ---
36
+
37
+ # SetFit with mini1013/master_domain
38
+
39
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
40
+
41
+ The model has been trained using an efficient few-shot learning technique that involves:
42
+
43
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
44
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
45
+
46
+ ## Model Details
47
+
48
+ ### Model Description
49
+ - **Model Type:** SetFit
50
+ - **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain)
51
+ - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
52
+ - **Maximum Sequence Length:** 512 tokens
53
+ - **Number of Classes:** 3 classes
54
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
55
+ <!-- - **Language:** Unknown -->
56
+ <!-- - **License:** Unknown -->
57
+
58
+ ### Model Sources
59
+
60
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
61
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
62
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
63
+
64
+ ### Model Labels
65
+ | Label | Examples |
66
+ |:------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
67
+ | 2.0 | <ul><li>'팔도 뽀로로 홍삼쏙쏙 오렌지 100ml 20포 출산/육아 > 아기간식 > 유아음료'</li><li>'팔도 뽀로로 음료 어린이 키즈 주스 식혜 홍삼쏙쏙 워터젤리 모음 2.페트음료_사과x12개+블루베리12개 출산/육아 > 아기간식 > 유아음료'</li><li>'[1+1] 학교로 간 어린이주스 아기음료 유아주스 11종 사과즙 배도라지즙 [일반캡] 샤인머스캣 20팩_★안전캡★ 배 20팩_학교로간 10팩(맛&캡타입 랜덤) 출산/육아 > 아기간식 > 유아음료'</li></ul> |
68
+ | 0.0 | <ul><li>'[산골이유식] 산골간식 쌀참 떡뻥 과일참 알밤 꿀밤 배도라지즙 퓨레 푸딩 요거트 비타민젤리 어린이김 쌈장 사과퓨레1팩 출산/육아 > 아기간식 > 유아과자'</li><li>'내아이애 아기과자 유기농 떡뻥 백미 08_유기농 떡뻥 양파 출산/육아 > 아기간식 > 유아과자'</li><li>'숲바른 유기농 맑음과자 국내산 아기 과자 유아 간식 떡뻥 스틱 [스틱]단호박 출산/육아 > 아기간식 > 유아과자'</li></ul> |
69
+ | 1.0 | <ul><li>'파스퇴르 위드맘 산양 제왕 100일 유아이유식분유 750g × 3개 출산/육아 > 아기간식 > 유아유제품'</li><li>'앱솔루트 킨더밀쉬 200ml 출산/육아 > 아기간식 > 유아유제품'</li><li>'매일유업 상하치즈 유기농 어린이치즈 3단계 60매 아기 간식 출산/육아 > 아기간식 > 유아유제품'</li></ul> |
70
+
71
+ ## Evaluation
72
+
73
+ ### Metrics
74
+ | Label | Accuracy |
75
+ |:--------|:---------|
76
+ | **all** | 0.9978 |
77
+
78
+ ## Uses
79
+
80
+ ### Direct Use for Inference
81
+
82
+ First install the SetFit library:
83
+
84
+ ```bash
85
+ pip install setfit
86
+ ```
87
+
88
+ Then you can load this model and run inference.
89
+
90
+ ```python
91
+ from setfit import SetFitModel
92
+
93
+ # Download from the 🤗 Hub
94
+ model = SetFitModel.from_pretrained("mini1013/master_cate_bc12")
95
+ # Run inference
96
+ preds = model("팔도 뽀로로 밀크맛 235ml 1개입 대페트_칠성 제로 사이다 1.5L 12개입 출산/육아 > 아기간식 > 유아음료")
97
+ ```
98
+
99
+ <!--
100
+ ### Downstream Use
101
+
102
+ *List how someone could finetune this model on their own dataset.*
103
+ -->
104
+
105
+ <!--
106
+ ### Out-of-Scope Use
107
+
108
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
109
+ -->
110
+
111
+ <!--
112
+ ## Bias, Risks and Limitations
113
+
114
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
115
+ -->
116
+
117
+ <!--
118
+ ### Recommendations
119
+
120
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
121
+ -->
122
+
123
+ ## Training Details
124
+
125
+ ### Training Set Metrics
126
+ | Training set | Min | Median | Max |
127
+ |:-------------|:----|:--------|:----|
128
+ | Word count | 7 | 15.3381 | 37 |
129
+
130
+ | Label | Training Sample Count |
131
+ |:------|:----------------------|
132
+ | 0.0 | 70 |
133
+ | 1.0 | 70 |
134
+ | 2.0 | 70 |
135
+
136
+ ### Training Hyperparameters
137
+ - batch_size: (256, 256)
138
+ - num_epochs: (30, 30)
139
+ - max_steps: -1
140
+ - sampling_strategy: oversampling
141
+ - num_iterations: 50
142
+ - body_learning_rate: (2e-05, 1e-05)
143
+ - head_learning_rate: 0.01
144
+ - loss: CosineSimilarityLoss
145
+ - distance_metric: cosine_distance
146
+ - margin: 0.25
147
+ - end_to_end: False
148
+ - use_amp: False
149
+ - warmup_proportion: 0.1
150
+ - l2_weight: 0.01
151
+ - seed: 42
152
+ - eval_max_steps: -1
153
+ - load_best_model_at_end: False
154
+
155
+ ### Training Results
156
+ | Epoch | Step | Training Loss | Validation Loss |
157
+ |:-------:|:----:|:-------------:|:---------------:|
158
+ | 0.0238 | 1 | 0.4944 | - |
159
+ | 1.1905 | 50 | 0.4153 | - |
160
+ | 2.3810 | 100 | 0.1469 | - |
161
+ | 3.5714 | 150 | 0.0014 | - |
162
+ | 4.7619 | 200 | 0.0001 | - |
163
+ | 5.9524 | 250 | 0.0001 | - |
164
+ | 7.1429 | 300 | 0.0001 | - |
165
+ | 8.3333 | 350 | 0.0 | - |
166
+ | 9.5238 | 400 | 0.0 | - |
167
+ | 10.7143 | 450 | 0.0 | - |
168
+ | 11.9048 | 500 | 0.0 | - |
169
+ | 13.0952 | 550 | 0.0 | - |
170
+ | 14.2857 | 600 | 0.0 | - |
171
+ | 15.4762 | 650 | 0.0 | - |
172
+ | 16.6667 | 700 | 0.0 | - |
173
+ | 17.8571 | 750 | 0.0 | - |
174
+ | 19.0476 | 800 | 0.0 | - |
175
+ | 20.2381 | 850 | 0.0 | - |
176
+ | 21.4286 | 900 | 0.0 | - |
177
+ | 22.6190 | 950 | 0.0 | - |
178
+ | 23.8095 | 1000 | 0.0 | - |
179
+ | 25.0 | 1050 | 0.0 | - |
180
+ | 26.1905 | 1100 | 0.0 | - |
181
+ | 27.3810 | 1150 | 0.0 | - |
182
+ | 28.5714 | 1200 | 0.0 | - |
183
+ | 29.7619 | 1250 | 0.0 | - |
184
+
185
+ ### Framework Versions
186
+ - Python: 3.10.12
187
+ - SetFit: 1.1.0
188
+ - Sentence Transformers: 3.3.1
189
+ - Transformers: 4.44.2
190
+ - PyTorch: 2.2.0a0+81ea7a4
191
+ - Datasets: 3.2.0
192
+ - Tokenizers: 0.19.1
193
+
194
+ ## Citation
195
+
196
+ ### BibTeX
197
+ ```bibtex
198
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
199
+ doi = {10.48550/ARXIV.2209.11055},
200
+ url = {https://arxiv.org/abs/2209.11055},
201
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
202
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
203
+ title = {Efficient Few-Shot Learning Without Prompts},
204
+ publisher = {arXiv},
205
+ year = {2022},
206
+ copyright = {Creative Commons Attribution 4.0 International}
207
+ }
208
+ ```
209
+
210
+ <!--
211
+ ## Glossary
212
+
213
+ *Clearly define terms in order to be accessible across audiences.*
214
+ -->
215
+
216
+ <!--
217
+ ## Model Card Authors
218
+
219
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
220
+ -->
221
+
222
+ <!--
223
+ ## Model Card Contact
224
+
225
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
226
+ -->
config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "mini1013/master_item_bc",
3
+ "architectures": [
4
+ "RobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "gradient_checkpointing": false,
11
+ "hidden_act": "gelu",
12
+ "hidden_dropout_prob": 0.1,
13
+ "hidden_size": 768,
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 3072,
16
+ "layer_norm_eps": 1e-05,
17
+ "max_position_embeddings": 514,
18
+ "model_type": "roberta",
19
+ "num_attention_heads": 12,
20
+ "num_hidden_layers": 12,
21
+ "pad_token_id": 1,
22
+ "position_embedding_type": "absolute",
23
+ "tokenizer_class": "BertTokenizer",
24
+ "torch_dtype": "float32",
25
+ "transformers_version": "4.44.2",
26
+ "type_vocab_size": 1,
27
+ "use_cache": true,
28
+ "vocab_size": 32000
29
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.3.1",
4
+ "transformers": "4.44.2",
5
+ "pytorch": "2.2.0a0+81ea7a4"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
config_setfit.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "labels": null,
3
+ "normalize_embeddings": false
4
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:00f7f33b5e9b91c3abbcbb1cf3de576b7fe76e714f4af7f3d251757dad21a51a
3
+ size 442494816
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a619fe73fe910d7e204ab26e83b55805223165d95c7c64293ee52131c137cfc1
3
+ size 19295
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "[CLS]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "[SEP]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "[MASK]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "[PAD]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "[SEP]",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[CLS]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "[PAD]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "[SEP]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "[UNK]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "4": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "[CLS]",
45
+ "clean_up_tokenization_spaces": false,
46
+ "cls_token": "[CLS]",
47
+ "do_basic_tokenize": true,
48
+ "do_lower_case": false,
49
+ "eos_token": "[SEP]",
50
+ "mask_token": "[MASK]",
51
+ "max_length": 512,
52
+ "model_max_length": 512,
53
+ "never_split": null,
54
+ "pad_to_multiple_of": null,
55
+ "pad_token": "[PAD]",
56
+ "pad_token_type_id": 0,
57
+ "padding_side": "right",
58
+ "sep_token": "[SEP]",
59
+ "stride": 0,
60
+ "strip_accents": null,
61
+ "tokenize_chinese_chars": true,
62
+ "tokenizer_class": "BertTokenizer",
63
+ "truncation_side": "right",
64
+ "truncation_strategy": "longest_first",
65
+ "unk_token": "[UNK]"
66
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff