mini1013 commited on
Commit
13d148f
·
verified ·
1 Parent(s): 6c84a4b

Push model using huggingface_hub.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,205 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: mini1013/master_domain
3
+ library_name: setfit
4
+ metrics:
5
+ - metric
6
+ pipeline_tag: text-classification
7
+ tags:
8
+ - setfit
9
+ - sentence-transformers
10
+ - text-classification
11
+ - generated_from_setfit_trainer
12
+ widget:
13
+ - text: '[10%+복수620]국내생산 남자여자 최대15켤레 페이크삭스 실리콘 덧신 양말 학생 무지 25_챠밍레이스실리콘_여성_베이지(4켤레)
14
+ 발장난양말'
15
+ - text: W616 따뜻한 두꺼운 순면 통파일 무지 긴 양말 여자 남자 빅사이즈 수면 겨울 덧신 니삭스 W432 골지 통파일 덧신_S(225-245mm)_블랙
16
+ 삭스에이
17
+ - text: '[2차 11/14 예약배송][23FW] HEMISH LEG WARMER - MELANGE GREY MELANGE GREY_FREE
18
+ 주식회사 타입스(Types Co.,Ltd)'
19
+ - text: 도톰한 면두올 양말 국내생산/중목/장목/스니커즈/패션/학생 25~26_26.남녀 기모덧신_여)2켤레 / 블랙 투투삭스
20
+ - text: 도톰 엄지 양말 발가락 여 타비 삭스 기모 보온 컬러 여자 두꺼운 무지 연브라운 김민주
21
+ inference: true
22
+ model-index:
23
+ - name: SetFit with mini1013/master_domain
24
+ results:
25
+ - task:
26
+ type: text-classification
27
+ name: Text Classification
28
+ dataset:
29
+ name: Unknown
30
+ type: unknown
31
+ split: test
32
+ metrics:
33
+ - type: metric
34
+ value: 0.7735123253257968
35
+ name: Metric
36
+ ---
37
+
38
+ # SetFit with mini1013/master_domain
39
+
40
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
41
+
42
+ The model has been trained using an efficient few-shot learning technique that involves:
43
+
44
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
45
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
46
+
47
+ ## Model Details
48
+
49
+ ### Model Description
50
+ - **Model Type:** SetFit
51
+ - **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain)
52
+ - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
53
+ - **Maximum Sequence Length:** 512 tokens
54
+ - **Number of Classes:** 2 classes
55
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
56
+ <!-- - **Language:** Unknown -->
57
+ <!-- - **License:** Unknown -->
58
+
59
+ ### Model Sources
60
+
61
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
62
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
63
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
64
+
65
+ ### Model Labels
66
+ | Label | Examples |
67
+ |:------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
68
+ | 1.0 | <ul><li>'자전거 등산 골프 겨울 발 다리토시 레그워머 브라운 디플코리아 (Digital Plus Korea)'</li><li>'국산 면 탁텔 겨울 방한 팔 다리 수면 토시 발 임산부 산후용품 수족냉증 겨울 방한 보온 기본 수면토시 그레이 세자매 양말'</li><li>'세븐다스 여자 레그워머 수면 여성 발토시 겨울 보온 SD001 그레이_FREE 아이보리'</li></ul> |
69
+ | 0.0 | <ul><li>'[매장발송] 마리떼 11/6 배송 3PACK EMBROIDERY SOCKS multi OS 와이에스마켓'</li><li>'에브리데이 플러스 쿠션 트레이닝 크루 삭스(3켤레) SX6888-100 024 '</li><li>'[롯데백화점]언더아머(백) 유니섹스 UA 코어 쿼터 양말 - 3켤레 1358344-100 1.LG 롯데백화점_'</li></ul> |
70
+
71
+ ## Evaluation
72
+
73
+ ### Metrics
74
+ | Label | Metric |
75
+ |:--------|:-------|
76
+ | **all** | 0.7735 |
77
+
78
+ ## Uses
79
+
80
+ ### Direct Use for Inference
81
+
82
+ First install the SetFit library:
83
+
84
+ ```bash
85
+ pip install setfit
86
+ ```
87
+
88
+ Then you can load this model and run inference.
89
+
90
+ ```python
91
+ from setfit import SetFitModel
92
+
93
+ # Download from the 🤗 Hub
94
+ model = SetFitModel.from_pretrained("mini1013/master_cate_ac8")
95
+ # Run inference
96
+ preds = model("도톰 엄지 양말 발가락 여 타비 삭스 기모 보온 컬러 여자 두꺼운 무지 연브라운 김민주")
97
+ ```
98
+
99
+ <!--
100
+ ### Downstream Use
101
+
102
+ *List how someone could finetune this model on their own dataset.*
103
+ -->
104
+
105
+ <!--
106
+ ### Out-of-Scope Use
107
+
108
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
109
+ -->
110
+
111
+ <!--
112
+ ## Bias, Risks and Limitations
113
+
114
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
115
+ -->
116
+
117
+ <!--
118
+ ### Recommendations
119
+
120
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
121
+ -->
122
+
123
+ ## Training Details
124
+
125
+ ### Training Set Metrics
126
+ | Training set | Min | Median | Max |
127
+ |:-------------|:----|:-------|:----|
128
+ | Word count | 4 | 10.82 | 24 |
129
+
130
+ | Label | Training Sample Count |
131
+ |:------|:----------------------|
132
+ | 0.0 | 50 |
133
+ | 1.0 | 50 |
134
+
135
+ ### Training Hyperparameters
136
+ - batch_size: (512, 512)
137
+ - num_epochs: (20, 20)
138
+ - max_steps: -1
139
+ - sampling_strategy: oversampling
140
+ - num_iterations: 40
141
+ - body_learning_rate: (2e-05, 2e-05)
142
+ - head_learning_rate: 2e-05
143
+ - loss: CosineSimilarityLoss
144
+ - distance_metric: cosine_distance
145
+ - margin: 0.25
146
+ - end_to_end: False
147
+ - use_amp: False
148
+ - warmup_proportion: 0.1
149
+ - seed: 42
150
+ - eval_max_steps: -1
151
+ - load_best_model_at_end: False
152
+
153
+ ### Training Results
154
+ | Epoch | Step | Training Loss | Validation Loss |
155
+ |:------:|:----:|:-------------:|:---------------:|
156
+ | 0.0625 | 1 | 0.4226 | - |
157
+ | 3.125 | 50 | 0.0022 | - |
158
+ | 6.25 | 100 | 0.0001 | - |
159
+ | 9.375 | 150 | 0.0001 | - |
160
+ | 12.5 | 200 | 0.0001 | - |
161
+ | 15.625 | 250 | 0.0001 | - |
162
+ | 18.75 | 300 | 0.0001 | - |
163
+
164
+ ### Framework Versions
165
+ - Python: 3.10.12
166
+ - SetFit: 1.1.0.dev0
167
+ - Sentence Transformers: 3.1.1
168
+ - Transformers: 4.46.1
169
+ - PyTorch: 2.4.0+cu121
170
+ - Datasets: 2.20.0
171
+ - Tokenizers: 0.20.0
172
+
173
+ ## Citation
174
+
175
+ ### BibTeX
176
+ ```bibtex
177
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
178
+ doi = {10.48550/ARXIV.2209.11055},
179
+ url = {https://arxiv.org/abs/2209.11055},
180
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
181
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
182
+ title = {Efficient Few-Shot Learning Without Prompts},
183
+ publisher = {arXiv},
184
+ year = {2022},
185
+ copyright = {Creative Commons Attribution 4.0 International}
186
+ }
187
+ ```
188
+
189
+ <!--
190
+ ## Glossary
191
+
192
+ *Clearly define terms in order to be accessible across audiences.*
193
+ -->
194
+
195
+ <!--
196
+ ## Model Card Authors
197
+
198
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
199
+ -->
200
+
201
+ <!--
202
+ ## Model Card Contact
203
+
204
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
205
+ -->
config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "mini1013/master_item_ac",
3
+ "architectures": [
4
+ "RobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "gradient_checkpointing": false,
11
+ "hidden_act": "gelu",
12
+ "hidden_dropout_prob": 0.1,
13
+ "hidden_size": 768,
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 3072,
16
+ "layer_norm_eps": 1e-05,
17
+ "max_position_embeddings": 514,
18
+ "model_type": "roberta",
19
+ "num_attention_heads": 12,
20
+ "num_hidden_layers": 12,
21
+ "pad_token_id": 1,
22
+ "position_embedding_type": "absolute",
23
+ "tokenizer_class": "BertTokenizer",
24
+ "torch_dtype": "float32",
25
+ "transformers_version": "4.46.1",
26
+ "type_vocab_size": 1,
27
+ "use_cache": true,
28
+ "vocab_size": 32000
29
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.1.1",
4
+ "transformers": "4.46.1",
5
+ "pytorch": "2.4.0+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
config_setfit.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "labels": null,
3
+ "normalize_embeddings": false
4
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7a7004deb487bb09628819fb0381e5c0f4b2ad845262d6b4e561f0dbca49f32b
3
+ size 442494816
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6de62db07e2cf12d9d108732ffb8bc8bdc6afc27b115938b256b1119840f9e50
3
+ size 6975
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "[CLS]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "[SEP]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "[MASK]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "[PAD]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "[SEP]",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[CLS]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "[PAD]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "[SEP]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "[UNK]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "4": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "[CLS]",
45
+ "clean_up_tokenization_spaces": false,
46
+ "cls_token": "[CLS]",
47
+ "do_basic_tokenize": true,
48
+ "do_lower_case": false,
49
+ "eos_token": "[SEP]",
50
+ "mask_token": "[MASK]",
51
+ "max_length": 512,
52
+ "model_max_length": 512,
53
+ "never_split": null,
54
+ "pad_to_multiple_of": null,
55
+ "pad_token": "[PAD]",
56
+ "pad_token_type_id": 0,
57
+ "padding_side": "right",
58
+ "sep_token": "[SEP]",
59
+ "stride": 0,
60
+ "strip_accents": null,
61
+ "tokenize_chinese_chars": true,
62
+ "tokenizer_class": "BertTokenizer",
63
+ "truncation_side": "right",
64
+ "truncation_strategy": "longest_first",
65
+ "unk_token": "[UNK]"
66
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff