File size: 10,887 Bytes
17cb054 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 |
---
base_model: mini1013/master_domain
library_name: setfit
metrics:
- metric
pipeline_tag: text-classification
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: 가스코 가죽전용염색약 소파 카시트 스니커즈 33색상 100ml 다크브라운 주식회사가스코
- text: 레인슈즈 장화 방수 부츠 수중작업 신발보호 고무 미끄럼방지 여성용 H_M 34-36 지에스
- text: 가스코 가죽전용염색약 도구 풀세트 가죽옷 100ml 브라운_무광 주식회사 가스코
- text: 엑스솔 에어슬림 인솔 기능성 신발 깔창 245mm 주식회사 영창에코
- text: 깁스 양말 싸개 발 보호 보온 방한 편한 이쁜 롱 부츠형 여성 방수커버 샤워 팔 남성용 플러시 슬리브/두꺼운 버전 높이 35_45
핑크고릴라
inference: true
model-index:
- name: SetFit with mini1013/master_domain
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Unknown
type: unknown
split: test
metrics:
- type: metric
value: 0.9254610935283204
name: Metric
---
# SetFit with mini1013/master_domain
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
## Model Details
### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 512 tokens
- **Number of Classes:** 7 classes
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
### Model Labels
| Label | Examples |
|:------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6.0 | <ul><li>'등산화끈 1+1 통끈_라인네이비 신세계몰'</li><li>'등산화끈 1+1 트위스트_브라운 신세계몰'</li><li>'몽벨 슈레이스 플랫 4MM YELLOW JBSXXUZZ105 신발끈 평끈 등산화끈 140 (주)코어밸류'</li></ul> |
| 2.0 | <ul><li>'고급 강남스타힐 구두굽/소음방지/충격완화/하이힐굽 블랙_DD-107 슈미즈'</li><li>'발 뒤꿈치 패드 쿠션 신발 구두 운동화 사이즈 클때 줄이기 패드 6-피넛_아이보리화이트_One Size(2P) 저스트에잇'</li><li>'고급 강남스타힐 구두굽/소음방지/충격완화/하이힐굽 블랙_DD-092 슈미즈'</li></ul> |
| 5.0 | <ul><li>'[웰럽] 시그니처 깔창 아치 운동화 등산화 군대 군인 군화 안전화 평발 기능성 키높이 [0008]그린 M(255 270) CJONSTYLE'</li><li>'[롯데백화점]에코(슈즈) 컴포트 에브리데이 인솔 멘즈 9059029-00101 블랙_EU 39 롯데백화점_'</li><li>'등산화 깔창 기능성 운동화 특수 스포츠 신발 키높이 골프화 XL275-295 마켓퀸즈'</li></ul> |
| 0.0 | <ul><li>'[현대백화점]금강제화 랜드로바 SHOSC0150SAM 휴대용 미니 구두헤라 [00001] 휴대용 구두칼 (주)현대홈쇼핑'</li><li>'에드가 체크 소가죽 휴대용 슈혼 navy 000 (주)트라이본즈'</li><li>'[금강제화](광주신세계) 콜렉션 휴대용 슈혼 스틸 미니 구두 헤라 N8MKA150/SHOSC0150SAM 10.5cm 신세계백화점'</li></ul> |
| 4.0 | <ul><li>'비오는날 남성 여성 1회용비닐덧신 S M L 비올때신발 여름필수품 신발우비 색상_레인신발커버 투명블루M 오픈리빙'</li><li>'비올때 이색적인 여성용 싱글 슈즈 가죽 신발 여성 패션 레인신발커버 멋스러운코디 13_39 스톰브랜상범'</li><li>'투명 슈즈 패션 워터 장마 여성장화 미끄럼방지 학생 XXL(43-45 적합)_블루-하이 [미끄럼방지창x2년 품질] 구룡글로벌'</li></ul> |
| 1.0 | <ul><li>'곰돌이 블랙 검정하트 화이트 남자 성인 커플 지비추 자비츠 심플 파츠 클로그 참 장식신발 A set (블랙-화이트) 뉴지(NYUZY)'</li><li>'슈팁 금속팁 메탈락팁 듀브레 메탈밴드 악어클립 메탈고정핀 플라스틱고정핀 골드슈팁 황동슈팁 실버슈팁 금속슈팁 굵은골드(4개) 슈레이스'</li><li>'(SAPHIR) 사피르 레노베이팅 컬러 재생크림 / 가죽 염색제 리노베이팅 미디엄브라운 제이엠컴퍼니'</li></ul> |
| 3.0 | <ul><li>'STRATTON 남성용 삼나무 슈트리- 미국산, m / 9 - 10 알쓰리컴퍼니'</li><li>'발볼 여자 신발 남자 제골기 발등 여성하이힐 발등 코코나라'</li><li>'슈샤이너 전기 금속제골기 경첩타입 전문가용 레지가다 업소용 여성용 js9997'</li></ul> |
## Evaluation
### Metrics
| Label | Metric |
|:--------|:-------|
| **all** | 0.9255 |
## Uses
### Direct Use for Inference
First install the SetFit library:
```bash
pip install setfit
```
Then you can load this model and run inference.
```python
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("mini1013/master_cate_ac7")
# Run inference
preds = model("엑스솔 에어슬림 인솔 기능성 신발 깔창 245mm 주식회사 영창에코")
```
<!--
### Downstream Use
*List how someone could finetune this model on their own dataset.*
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Set Metrics
| Training set | Min | Median | Max |
|:-------------|:----|:--------|:----|
| Word count | 3 | 10.4257 | 27 |
| Label | Training Sample Count |
|:------|:----------------------|
| 0.0 | 50 |
| 1.0 | 50 |
| 2.0 | 50 |
| 3.0 | 50 |
| 4.0 | 50 |
| 5.0 | 50 |
| 6.0 | 50 |
### Training Hyperparameters
- batch_size: (512, 512)
- num_epochs: (20, 20)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 40
- body_learning_rate: (2e-05, 2e-05)
- head_learning_rate: 2e-05
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
### Training Results
| Epoch | Step | Training Loss | Validation Loss |
|:-------:|:----:|:-------------:|:---------------:|
| 0.0182 | 1 | 0.3761 | - |
| 0.9091 | 50 | 0.2291 | - |
| 1.8182 | 100 | 0.033 | - |
| 2.7273 | 150 | 0.018 | - |
| 3.6364 | 200 | 0.0001 | - |
| 4.5455 | 250 | 0.0001 | - |
| 5.4545 | 300 | 0.0001 | - |
| 6.3636 | 350 | 0.0001 | - |
| 7.2727 | 400 | 0.0001 | - |
| 8.1818 | 450 | 0.0 | - |
| 9.0909 | 500 | 0.0 | - |
| 10.0 | 550 | 0.0 | - |
| 10.9091 | 600 | 0.0 | - |
| 11.8182 | 650 | 0.0 | - |
| 12.7273 | 700 | 0.0 | - |
| 13.6364 | 750 | 0.0 | - |
| 14.5455 | 800 | 0.0 | - |
| 15.4545 | 850 | 0.0 | - |
| 16.3636 | 900 | 0.0 | - |
| 17.2727 | 950 | 0.0001 | - |
| 18.1818 | 1000 | 0.0 | - |
| 19.0909 | 1050 | 0.0 | - |
| 20.0 | 1100 | 0.0 | - |
### Framework Versions
- Python: 3.10.12
- SetFit: 1.1.0.dev0
- Sentence Transformers: 3.1.1
- Transformers: 4.46.1
- PyTorch: 2.4.0+cu121
- Datasets: 2.20.0
- Tokenizers: 0.20.0
## Citation
### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |