--- base_model: mini1013/master_domain library_name: setfit metrics: - metric pipeline_tag: text-classification tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer widget: - text: 세이코 SBTR SBTR011 전용 힐링쉴드 시계보호필름 기스방지 유리보호필름 31평면 스타샵 - text: 시계줄 교체공구 스프링툴바/메탈,가죽밴드 변경도구/시계줄질도구 스프링바툴 멀티형 올리브tree - text: 오메가호환 시계줄 스트랩 가죽 시계 체인 12 OMJ-브라운 화이트 라인 + 실버_20mm 더블드래곤(Double dragon) - text: Uhgbsd 가죽 스트랩 VC 바쉐론 콘스탄틴 시계 호환 남성 액세서리 19mm 20mm 22mm 1_10 Black Gold Fold Bk 시구왕씨 - text: 디젤 DZ4316 DZ7395 7305 4209 4215 용 스테인레스 스틸 시계 호환용 남성용 메탈 솔리드 밴드 24mm 30mm 04 B Black_05 30mm 아이스박스(ICEBOX) inference: true model-index: - name: SetFit with mini1013/master_domain results: - task: type: text-classification name: Text Classification dataset: name: Unknown type: unknown split: test metrics: - type: metric value: 0.5793723141033988 name: Metric --- # SetFit with mini1013/master_domain This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 512 tokens - **Number of Classes:** 5 classes ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 0.0 | | | 3.0 | | | 4.0 | | | 2.0 | | | 1.0 | | ## Evaluation ### Metrics | Label | Metric | |:--------|:-------| | **all** | 0.5794 | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the 🤗 Hub model = SetFitModel.from_pretrained("mini1013/master_cate_ac6") # Run inference preds = model("세이코 SBTR SBTR011 전용 힐링쉴드 시계보호필름 기스방지 유리보호필름 31평면 스타샵") ``` ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:--------|:----| | Word count | 3 | 10.9107 | 22 | | Label | Training Sample Count | |:------|:----------------------| | 0.0 | 50 | | 1.0 | 50 | | 2.0 | 24 | | 3.0 | 50 | | 4.0 | 50 | ### Training Hyperparameters - batch_size: (512, 512) - num_epochs: (20, 20) - max_steps: -1 - sampling_strategy: oversampling - num_iterations: 40 - body_learning_rate: (2e-05, 2e-05) - head_learning_rate: 2e-05 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: False ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:-------:|:----:|:-------------:|:---------------:| | 0.0286 | 1 | 0.3696 | - | | 1.4286 | 50 | 0.1249 | - | | 2.8571 | 100 | 0.0114 | - | | 4.2857 | 150 | 0.0001 | - | | 5.7143 | 200 | 0.0001 | - | | 7.1429 | 250 | 0.0001 | - | | 8.5714 | 300 | 0.0001 | - | | 10.0 | 350 | 0.0001 | - | | 11.4286 | 400 | 0.0 | - | | 12.8571 | 450 | 0.0001 | - | | 14.2857 | 500 | 0.0 | - | | 15.7143 | 550 | 0.0 | - | | 17.1429 | 600 | 0.0 | - | | 18.5714 | 650 | 0.0 | - | | 20.0 | 700 | 0.0 | - | ### Framework Versions - Python: 3.10.12 - SetFit: 1.1.0.dev0 - Sentence Transformers: 3.1.1 - Transformers: 4.46.1 - PyTorch: 2.4.0+cu121 - Datasets: 2.20.0 - Tokenizers: 0.20.0 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```