File size: 9,815 Bytes
2230f13
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
---
base_model: mini1013/master_domain
library_name: setfit
metrics:
- metric
pipeline_tag: text-classification
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: 길이조절 안경고정 밴드 코받침 패드 운동 캠핑 등산 진브라운 알리몽드
- text: 레이밴 안경테 RB3691VF 2509 남자 여자 동그란안경 아시안핏  시온아이엔티
- text: 밀착 스포츠안경줄 흔들림방지 안경스트랩  비앤비
- text: '[텐바이텐]바체타팩토리 가죽 안경 케이스 08 오렌지_추가 안 함_추가 안 함 신세계몰'
- text: TUMI 투미 카본 티타늄 명품 안경테 메탈 스퀘어 남자 여자 공용 안경 04.TU10-0003-01 LFmall02
inference: true
model-index:
- name: SetFit with mini1013/master_domain
  results:
  - task:
      type: text-classification
      name: Text Classification
    dataset:
      name: Unknown
      type: unknown
      split: test
    metrics:
    - type: metric
      value: 0.9104360692836626
      name: Metric
---

# SetFit with mini1013/master_domain

This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.

## Model Details

### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 512 tokens
- **Number of Classes:** 6 classes
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)

### Model Labels
| Label | Examples                                                                                                                                                                                                                         |
|:------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5.0   | <ul><li>'초경량 국산 안경테 베타 울템 카본 티타늄 뿔테안경 551-599_S571-2 브라운투톤 ENA아이웨어'</li><li>'B019 ORIGINAL GLASS CRYSTAL GREEN  '</li><li>'니시데카즈오 BROWLINE2 하금테 근적외선 차단렌즈 아이라이크(EYE LIKE)'</li></ul>                                             |
| 1.0   | <ul><li>'레더렛소가죽선글라스파우치휴대용안경케이스  이정민'</li><li>'위에 안경 쓰는 파우치 편광 끼우는 선글라스 3종 세트 선그라스 클립 에끼우는 플립 온 클립선글라스3종세트_일반블랙 홉포엘'</li><li>'휴대용 가죽 선글라스 안경 파우치 케이스 보관함 안 PU안경케이스_그레이 라이프패션'</li></ul>                                           |
| 3.0   | <ul><li>'아이업꽈배기인조가죽안경줄10p세트선글라스줄  유어드림커머스'</li><li>'스트랩 캐주얼디자인줄 스토퍼줄 안경걸이 끈 B 더펭귄샵'</li><li>'천연 크리스탈 안경 선글라스 걸이 줄 원석 비즈 빈티지 에스닉 마스크 스트랩 겸용 블루  3mm  70-75CM nouville'</li></ul>                                                  |
| 0.0   | <ul><li>'갤러리아 NIRNIR SUNGLASS 5 COLOR GREEN 갤러리아몰'</li><li>'여자 켓아이 뿔테 선그라스 썬그라스 남자 RORGGE 2111 상품선택_2유광블랙 온달이'</li><li>'뮤즈 서클 뿔테선글라스 코코아 푸치백'</li></ul>                                                                          |
| 2.0   | <ul><li>'로에드 안경 자국 코패드 코받침 눌림 선글라스 코 통증 방지 패드 교체 스티커 안경코패드 1.8mm(화이트)_2.8mm(화이트) 로에드'</li><li>'[힐포]국산 고급 초극세사 렌즈 안경닦이 김서림방지 클리너 크리너 악기수건 안경천 융s 05. knit 안경닦이30매 15x18cm_블루 모아텍스'</li><li>'자우버 렌즈 케어 클리닝 티슈 200매  메디위'</li></ul> |
| 4.0   | <ul><li>'산리오 안경정리함 안경케이스 세트 6종 안경케이스시나모롤 지에이치글로벌'</li><li>'(이거찜) 프리미엄 가죽 안경집 안경케이스 가죽안경집 스카이 제이케이'</li><li>'스트랩 안경케이스 휴대용 안경파우치 가죽안경보관집 선글라스보관케이스 No.01 스트랩 안경케이스 블랙 여선영'</li></ul>                                              |

## Evaluation

### Metrics
| Label   | Metric |
|:--------|:-------|
| **all** | 0.9104 |

## Uses

### Direct Use for Inference

First install the SetFit library:

```bash
pip install setfit
```

Then you can load this model and run inference.

```python
from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("mini1013/master_cate_ac4")
# Run inference
preds = model("밀착 스포츠안경줄 흔들림방지 안경스트랩  비앤비")
```

<!--
### Downstream Use

*List how someone could finetune this model on their own dataset.*
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Set Metrics
| Training set | Min | Median | Max |
|:-------------|:----|:-------|:----|
| Word count   | 3   | 9.53   | 20  |

| Label | Training Sample Count |
|:------|:----------------------|
| 0.0   | 50                    |
| 1.0   | 50                    |
| 2.0   | 50                    |
| 3.0   | 50                    |
| 4.0   | 50                    |
| 5.0   | 50                    |

### Training Hyperparameters
- batch_size: (512, 512)
- num_epochs: (20, 20)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 40
- body_learning_rate: (2e-05, 2e-05)
- head_learning_rate: 2e-05
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False

### Training Results
| Epoch   | Step | Training Loss | Validation Loss |
|:-------:|:----:|:-------------:|:---------------:|
| 0.0213  | 1    | 0.4524        | -               |
| 1.0638  | 50   | 0.2583        | -               |
| 2.1277  | 100  | 0.0642        | -               |
| 3.1915  | 150  | 0.0781        | -               |
| 4.2553  | 200  | 0.0806        | -               |
| 5.3191  | 250  | 0.0391        | -               |
| 6.3830  | 300  | 0.0011        | -               |
| 7.4468  | 350  | 0.0003        | -               |
| 8.5106  | 400  | 0.0001        | -               |
| 9.5745  | 450  | 0.0001        | -               |
| 10.6383 | 500  | 0.0           | -               |
| 11.7021 | 550  | 0.0           | -               |
| 12.7660 | 600  | 0.0           | -               |
| 13.8298 | 650  | 0.0           | -               |
| 14.8936 | 700  | 0.0           | -               |
| 15.9574 | 750  | 0.0           | -               |
| 17.0213 | 800  | 0.0           | -               |
| 18.0851 | 850  | 0.0           | -               |
| 19.1489 | 900  | 0.0           | -               |

### Framework Versions
- Python: 3.10.12
- SetFit: 1.1.0.dev0
- Sentence Transformers: 3.1.1
- Transformers: 4.46.1
- PyTorch: 2.4.0+cu121
- Datasets: 2.20.0
- Tokenizers: 0.20.0

## Citation

### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->