Upload directory
Browse files- models/base/utils.py +91 -0
models/base/utils.py
ADDED
|
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import itertools
|
| 2 |
+
from typing import List, Optional, Tuple, Union
|
| 3 |
+
import safetensors
|
| 4 |
+
import torch
|
| 5 |
+
from torch import Tensor
|
| 6 |
+
import os
|
| 7 |
+
from pathlib import Path
|
| 8 |
+
from omegaconf import DictConfig, OmegaConf
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
def get_parameter_device(parameter: torch.nn.Module):
|
| 12 |
+
try:
|
| 13 |
+
parameters_and_buffers = itertools.chain(parameter.parameters(), parameter.buffers())
|
| 14 |
+
return next(parameters_and_buffers).device
|
| 15 |
+
except StopIteration:
|
| 16 |
+
# For torch.nn.DataParallel compatibility in PyTorch 1.5
|
| 17 |
+
def find_tensor_attributes(module: torch.nn.Module) -> List[Tuple[str, Tensor]]:
|
| 18 |
+
tuples = [(k, v) for k, v in module.__dict__.items() if torch.is_tensor(v)]
|
| 19 |
+
return tuples
|
| 20 |
+
gen = parameter._named_members(get_members_fn=find_tensor_attributes)
|
| 21 |
+
first_tuple = next(gen)
|
| 22 |
+
return first_tuple[1].device
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
def get_parameter_dtype(parameter: torch.nn.Module):
|
| 26 |
+
try:
|
| 27 |
+
params = tuple(parameter.parameters())
|
| 28 |
+
if len(params) > 0:
|
| 29 |
+
return params[0].dtype
|
| 30 |
+
|
| 31 |
+
buffers = tuple(parameter.buffers())
|
| 32 |
+
if len(buffers) > 0:
|
| 33 |
+
return buffers[0].dtype
|
| 34 |
+
|
| 35 |
+
except StopIteration:
|
| 36 |
+
# For torch.nn.DataParallel compatibility in PyTorch 1.5
|
| 37 |
+
|
| 38 |
+
def find_tensor_attributes(module: torch.nn.Module) -> List[Tuple[str, Tensor]]:
|
| 39 |
+
tuples = [(k, v) for k, v in module.__dict__.items() if torch.is_tensor(v)]
|
| 40 |
+
return tuples
|
| 41 |
+
|
| 42 |
+
gen = parameter._named_members(get_members_fn=find_tensor_attributes)
|
| 43 |
+
first_tuple = next(gen)
|
| 44 |
+
return first_tuple[1].dtype
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
def get_parent_directory(save_path: Union[str, os.PathLike]) -> Path:
|
| 48 |
+
path_obj = Path(save_path)
|
| 49 |
+
return path_obj.parent
|
| 50 |
+
|
| 51 |
+
def get_base_name(save_path: Union[str, os.PathLike]) -> str:
|
| 52 |
+
path_obj = Path(save_path)
|
| 53 |
+
return path_obj.name
|
| 54 |
+
|
| 55 |
+
def load_state_dict_from_path(path: Union[str, os.PathLike]):
|
| 56 |
+
# Load a state dict from a path.
|
| 57 |
+
if 'safetensors' in path:
|
| 58 |
+
state_dict = safetensors.torch.load_file(path)
|
| 59 |
+
else:
|
| 60 |
+
state_dict = torch.load(path, map_location="cpu")
|
| 61 |
+
return state_dict
|
| 62 |
+
|
| 63 |
+
def replace_extension(path, new_extension):
|
| 64 |
+
if not new_extension.startswith('.'):
|
| 65 |
+
new_extension = '.' + new_extension
|
| 66 |
+
return os.path.splitext(path)[0] + new_extension
|
| 67 |
+
|
| 68 |
+
def make_config_path(save_path):
|
| 69 |
+
config_path = replace_extension(save_path, '.yaml')
|
| 70 |
+
return config_path
|
| 71 |
+
|
| 72 |
+
def save_config(config, config_path):
|
| 73 |
+
assert isinstance(config, dict) or isinstance(config, DictConfig)
|
| 74 |
+
os.makedirs(get_parent_directory(config_path), exist_ok=True)
|
| 75 |
+
if isinstance(config, dict):
|
| 76 |
+
config = OmegaConf.create(config)
|
| 77 |
+
OmegaConf.save(config, config_path)
|
| 78 |
+
|
| 79 |
+
|
| 80 |
+
def save_state_dict_and_config(state_dict, config, save_path):
|
| 81 |
+
os.makedirs(get_parent_directory(save_path), exist_ok=True)
|
| 82 |
+
|
| 83 |
+
# save config dict
|
| 84 |
+
config_path = make_config_path(save_path)
|
| 85 |
+
save_config(config, config_path)
|
| 86 |
+
|
| 87 |
+
# Save the model
|
| 88 |
+
if 'safetensors' in save_path:
|
| 89 |
+
safetensors.torch.save_file(state_dict, save_path, metadata={"format": "pt"})
|
| 90 |
+
else:
|
| 91 |
+
torch.save(state_dict, save_path)
|