miittnnss commited on
Commit
737165a
·
1 Parent(s): 81050a4

Create pipeline.py

Browse files
Files changed (1) hide show
  1. pipeline.py +21 -0
pipeline.py ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ from torchvision import transforms
4
+ from PIL import Image
5
+
6
+ class PretrainedPipeline():
7
+ def __init__(self):
8
+ self.device = torch.device("cpu")
9
+ self.generator = Generator() # Instantiate your GAN generator class
10
+ self.generator.load_state_dict(torch.load("pytorch_model.bin", map_location=self.device))
11
+ self.generator.eval()
12
+
13
+ def generate_image(self):
14
+ with torch.no_grad():
15
+ noise = torch.randn(1, 128, 1, 1).to(self.device) # Assuming input noise size is 100
16
+ generated_image_tensor = self.generator(noise)
17
+ generated_image = generated_image_tensor.cpu().detach().squeeze(0)
18
+ # Assuming the generator output is in the range [-1, 1]
19
+ generated_image = (generated_image + 1) / 2.0
20
+ pil_image = transforms.ToPILImage()(generated_image)
21
+ return pil_image