File size: 8,654 Bytes
25bf357 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 |
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Part of the code was taken from:
# https://github.com/huggingface/transformers/blob/main/src/transformers/models/clap/convert_clap_original_pytorch_to_hf.py
import argparse
import torch
from PIL import Image
from transformers import AutoModel, AutoConfig
from transformers import CLIPImageProcessor, pipeline, CLIPTokenizer
from configuration_evaclip import EvaCLIPConfig
from modeling_evaclip import EvaCLIPModel
KEYS_TO_MODIFY_MAPPING = {
"cls_token":"embeddings.class_embedding",
"pos_embed":"embeddings.position_embedding.weight",
"patch_embed.proj":"embeddings.patch_embedding",
".positional_embedding":".embeddings.position_embedding.weight",
".token_embedding":".embeddings.token_embedding",
# "text.text_projection":"text_projection.weight",
"mlp.c_fc":"mlp.fc1",
"mlp.c_proj":"mlp.fc2",
"mlp.w1":"mlp.fc1",
"mlp.w2":"mlp.fc2",
"mlp.w3":"mlp.fc3",
".proj.":".out_proj.",
# "q_bias":"q_proj.bias",
# "v_bias":"v_proj.bias",
"out.":"out_proj.",
"norm1":"layer_norm1",
"norm2":"layer_norm2",
"ln_1":"layer_norm1",
"ln_2":"layer_norm2",
".attn":".self_attn",
"norm.":"post_layernorm.",
"ln_final":"final_layer_norm",
"visual.blocks":"vision_model.encoder.layers",
# "text.transformer.resblocks":"text_model.encoder.layers",
"visual.head":"visual_projection",
"visual.":"vision_model.",
# "text.":"text_model.",
}
def rename_state_dict(state_dict):
model_state_dict = {}
for key, value in state_dict.items():
# check if any key needs to be modified
for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items():
if key_to_modify in key:
key = key.replace(key_to_modify, new_key)
if "text_projection" in key:
model_state_dict[key] = value.T
elif "attn.qkv" in key:
# split qkv into query key and value
mixed_qkv = value
qkv_dim = mixed_qkv.size(0) // 3
query_layer = mixed_qkv[:qkv_dim]
key_layer = mixed_qkv[qkv_dim : qkv_dim * 2]
value_layer = mixed_qkv[qkv_dim * 2 :]
model_state_dict[key.replace("qkv", "q_proj")] = query_layer
model_state_dict[key.replace("qkv", "k_proj")] = key_layer
model_state_dict[key.replace("qkv", "v_proj")] = value_layer
elif "attn.in_proj" in key:
# split qkv into query key and value
mixed_qkv = value
qkv_dim = mixed_qkv.size(0) // 3
query_layer = mixed_qkv[:qkv_dim]
key_layer = mixed_qkv[qkv_dim : qkv_dim * 2]
value_layer = mixed_qkv[qkv_dim * 2 :]
model_state_dict[key.replace("in_proj_", "q_proj.")] = query_layer
model_state_dict[key.replace("in_proj_", "k_proj.")] = key_layer
model_state_dict[key.replace("in_proj_", "v_proj.")] = value_layer
elif "class_embedding" in key:
model_state_dict[key] = value[0,0,:]
elif "vision_model.embeddings.position_embedding" in key:
model_state_dict[key] = value[0,:,:]
else:
model_state_dict[key] = value
return model_state_dict
# This requires having a clone of https://github.com/baaivision/EVA/tree/master/EVA-CLIP as well as the right conda env
# Part of the code is copied from https://github.com/baaivision/EVA/blob/master/EVA-CLIP/README.md "Usage" section
def getevaclip(checkpoint_path, input_pixels, captions):
from eva_clip import create_model_and_transforms, get_tokenizer
model_name = "EVA02-CLIP-bigE-14-plus"
model, _, _ = create_model_and_transforms(model_name, checkpoint_path, force_custom_clip=True)
tokenizer = get_tokenizer(model_name)
text = tokenizer(captions)
with torch.no_grad():
text_features = model.encode_text(text)
image_features = model.encode_image(input_pixels)
image_features_normed = image_features / image_features.norm(dim=-1, keepdim=True)
text_features_normed = text_features / text_features.norm(dim=-1, keepdim=True)
label_probs = (100.0 * image_features_normed @ text_features_normed.T).softmax(dim=-1)
return label_probs
def save_model_and_config(pytorch_dump_folder_path, hf_model, transformers_config):
hf_model.save_pretrained(pytorch_dump_folder_path, safe_serialization=False)
transformers_config.save_pretrained(pytorch_dump_folder_path)
def check_loaded_model(pytorch_dump_folder_path, processor, image):
# hf_config = AutoConfig.from_pretrained(pytorch_dump_folder_path, trust_remote_code=True)
# hf_model = AutoModel.from_pretrained(pytorch_dump_folder_path, config=hf_config, trust_remote_code=True)
hf_model = AutoModel.from_pretrained(pytorch_dump_folder_path, trust_remote_code=True)
processor = CLIPImageProcessor.from_pretrained("openai/clip-vit-base-patch16")
image_path = 'LLM2CLIP-EVA02-B-16/CLIP.png'
image = Image.open(image_path)
input_pixels = processor(images=image, return_tensors="pt").pixel_values
with torch.no_grad():
image_features = hf_model.get_image_features(input_pixels)
print(image_features.shape)
# detector = pipeline(model=hf_model, task="zero-shot-image-classification", tokenizer = tokenizer, image_processor=processor)
# detector_probs = detector(image, candidate_labels=captions)
# print(f"text_probs loaded hf_model using pipeline: {detector_probs}")
def convert_evaclip_checkpoint(checkpoint_path, pytorch_dump_folder_path, config_path, image_path, save=False):
processor = CLIPImageProcessor.from_pretrained("openai/clip-vit-base-patch16")
image = Image.open(image_path)
input_pixels = processor( images=image, return_tensors="pt", padding=True).pixel_values
# This requires having a clone of https://github.com/baaivision/EVA/tree/master/EVA-CLIP as well as the right conda env
# original_evaclip_probs = getevaclip(checkpoint_path, input_pixels, captions)
# print(f"original_evaclip label probs: {original_evaclip_probs}")
transformers_config = EvaCLIPConfig.from_pretrained(config_path)
hf_model = EvaCLIPModel(transformers_config)
pt_model_state_dict = torch.load(checkpoint_path)['module']
state_dict = rename_state_dict(pt_model_state_dict)
hf_model.load_state_dict(state_dict, strict=False)
with torch.no_grad():
image_features = hf_model.get_image_features(input_pixels)
# text_features = hf_model.get_text_features(input_ids)
image_features /= image_features.norm(dim=-1, keepdim=True)
# text_features /= text_features.norm(dim=-1, keepdim=True)
print(image_features.shape)
# label_probs = (100.0 * image_features @ text_features.T).softmax(dim=-1)
# print(f"hf_model label probs: {label_probs}")
if save:
save_model_and_config(pytorch_dump_folder_path, hf_model, transformers_config)
check_loaded_model(pytorch_dump_folder_path, processor, image)
# hf_model.push_to_hub("ORGANIZATION_NAME/EVA02_CLIP_E_psz14_plus_s9B")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--pytorch_dump_folder_path", default="LLM2CLIP-EVA02-B-16" ,type=str, help="Path to the output PyTorch model.")
parser.add_argument("--checkpoint_path", default="/blob/hwq/data/tune_logs/T_vitB224_512x8_lr1e-5_Rcc12mR_Rcc3m_RIM15v1_RIM15v2_Ryfcc15m_20ep-2024_10_10-23/checkpoints/epoch_20/mp_rank_00_model_states.pt", type=str, help="Path to checkpoint" )
parser.add_argument("--config_path", default='LLM2CLIP-EVA02-B-16', type=str, help="Path to hf config.json of model to convert")
parser.add_argument("--image_path", default='LLM2CLIP-EVA02-B-16/CLIP.png', type=str, help="Path to image")
parser.add_argument("--save", default=False, type=str, help="Path to image")
args = parser.parse_args()
convert_evaclip_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.image_path, args.save)
|