michaelfeil commited on
Commit
fef27ef
·
1 Parent(s): a5b4286

Upload jinaai/jina-embedding-l-en-v1 ctranslate2 weights

Browse files
README.md ADDED
@@ -0,0 +1,2795 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ pipeline_tag: sentence-similarity
3
+ tags:
4
+ - ctranslate2
5
+ - int8
6
+ - float16
7
+ - finetuner
8
+ - mteb
9
+ - sentence-transformers
10
+ - feature-extraction
11
+ - sentence-similarity
12
+ datasets:
13
+ - jinaai/negation-dataset
14
+ language: en
15
+ license: apache-2.0
16
+ model-index:
17
+ - name: jina-triplets-large
18
+ results:
19
+ - task:
20
+ type: Classification
21
+ dataset:
22
+ type: mteb/amazon_counterfactual
23
+ name: MTEB AmazonCounterfactualClassification (en)
24
+ config: en
25
+ split: test
26
+ revision: e8379541af4e31359cca9fbcf4b00f2671dba205
27
+ metrics:
28
+ - type: accuracy
29
+ value: 68.92537313432835
30
+ - type: ap
31
+ value: 29.723758877632513
32
+ - type: f1
33
+ value: 61.909704211663794
34
+ - task:
35
+ type: Classification
36
+ dataset:
37
+ type: mteb/amazon_polarity
38
+ name: MTEB AmazonPolarityClassification
39
+ config: default
40
+ split: test
41
+ revision: e2d317d38cd51312af73b3d32a06d1a08b442046
42
+ metrics:
43
+ - type: accuracy
44
+ value: 69.13669999999999
45
+ - type: ap
46
+ value: 65.30216072238086
47
+ - type: f1
48
+ value: 67.1890891071034
49
+ - task:
50
+ type: Classification
51
+ dataset:
52
+ type: mteb/amazon_reviews_multi
53
+ name: MTEB AmazonReviewsClassification (en)
54
+ config: en
55
+ split: test
56
+ revision: 1399c76144fd37290681b995c656ef9b2e06e26d
57
+ metrics:
58
+ - type: accuracy
59
+ value: 31.384
60
+ - type: f1
61
+ value: 30.016752348953723
62
+ - task:
63
+ type: Retrieval
64
+ dataset:
65
+ type: arguana
66
+ name: MTEB ArguAna
67
+ config: default
68
+ split: test
69
+ revision: None
70
+ metrics:
71
+ - type: map_at_1
72
+ value: 23.613
73
+ - type: map_at_10
74
+ value: 37.897
75
+ - type: map_at_100
76
+ value: 39.093
77
+ - type: map_at_1000
78
+ value: 39.109
79
+ - type: map_at_3
80
+ value: 32.824
81
+ - type: map_at_5
82
+ value: 35.679
83
+ - type: mrr_at_1
84
+ value: 23.826
85
+ - type: mrr_at_10
86
+ value: 37.997
87
+ - type: mrr_at_100
88
+ value: 39.186
89
+ - type: mrr_at_1000
90
+ value: 39.202
91
+ - type: mrr_at_3
92
+ value: 32.918
93
+ - type: mrr_at_5
94
+ value: 35.748999999999995
95
+ - type: ndcg_at_1
96
+ value: 23.613
97
+ - type: ndcg_at_10
98
+ value: 46.482
99
+ - type: ndcg_at_100
100
+ value: 51.55499999999999
101
+ - type: ndcg_at_1000
102
+ value: 51.974
103
+ - type: ndcg_at_3
104
+ value: 35.964
105
+ - type: ndcg_at_5
106
+ value: 41.144999999999996
107
+ - type: precision_at_1
108
+ value: 23.613
109
+ - type: precision_at_10
110
+ value: 7.417999999999999
111
+ - type: precision_at_100
112
+ value: 0.963
113
+ - type: precision_at_1000
114
+ value: 0.1
115
+ - type: precision_at_3
116
+ value: 15.031
117
+ - type: precision_at_5
118
+ value: 11.55
119
+ - type: recall_at_1
120
+ value: 23.613
121
+ - type: recall_at_10
122
+ value: 74.182
123
+ - type: recall_at_100
124
+ value: 96.30199999999999
125
+ - type: recall_at_1000
126
+ value: 99.57300000000001
127
+ - type: recall_at_3
128
+ value: 45.092
129
+ - type: recall_at_5
130
+ value: 57.752
131
+ - task:
132
+ type: Clustering
133
+ dataset:
134
+ type: mteb/arxiv-clustering-p2p
135
+ name: MTEB ArxivClusteringP2P
136
+ config: default
137
+ split: test
138
+ revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
139
+ metrics:
140
+ - type: v_measure
141
+ value: 40.51285742156528
142
+ - task:
143
+ type: Clustering
144
+ dataset:
145
+ type: mteb/arxiv-clustering-s2s
146
+ name: MTEB ArxivClusteringS2S
147
+ config: default
148
+ split: test
149
+ revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
150
+ metrics:
151
+ - type: v_measure
152
+ value: 31.5825964077496
153
+ - task:
154
+ type: Reranking
155
+ dataset:
156
+ type: mteb/askubuntudupquestions-reranking
157
+ name: MTEB AskUbuntuDupQuestions
158
+ config: default
159
+ split: test
160
+ revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
161
+ metrics:
162
+ - type: map
163
+ value: 62.830281630546835
164
+ - type: mrr
165
+ value: 75.93072593765115
166
+ - task:
167
+ type: STS
168
+ dataset:
169
+ type: mteb/biosses-sts
170
+ name: MTEB BIOSSES
171
+ config: default
172
+ split: test
173
+ revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
174
+ metrics:
175
+ - type: cos_sim_pearson
176
+ value: 87.26764516732737
177
+ - type: cos_sim_spearman
178
+ value: 84.42541766631741
179
+ - type: euclidean_pearson
180
+ value: 48.71357447655235
181
+ - type: euclidean_spearman
182
+ value: 49.2023259276511
183
+ - type: manhattan_pearson
184
+ value: 48.36366272727299
185
+ - type: manhattan_spearman
186
+ value: 48.457128224924354
187
+ - task:
188
+ type: Classification
189
+ dataset:
190
+ type: mteb/banking77
191
+ name: MTEB Banking77Classification
192
+ config: default
193
+ split: test
194
+ revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
195
+ metrics:
196
+ - type: accuracy
197
+ value: 85.3409090909091
198
+ - type: f1
199
+ value: 85.25262617676835
200
+ - task:
201
+ type: Clustering
202
+ dataset:
203
+ type: mteb/biorxiv-clustering-p2p
204
+ name: MTEB BiorxivClusteringP2P
205
+ config: default
206
+ split: test
207
+ revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
208
+ metrics:
209
+ - type: v_measure
210
+ value: 33.560193912974974
211
+ - task:
212
+ type: Clustering
213
+ dataset:
214
+ type: mteb/biorxiv-clustering-s2s
215
+ name: MTEB BiorxivClusteringS2S
216
+ config: default
217
+ split: test
218
+ revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
219
+ metrics:
220
+ - type: v_measure
221
+ value: 28.4426572644577
222
+ - task:
223
+ type: Retrieval
224
+ dataset:
225
+ type: BeIR/cqadupstack
226
+ name: MTEB CQADupstackAndroidRetrieval
227
+ config: default
228
+ split: test
229
+ revision: None
230
+ metrics:
231
+ - type: map_at_1
232
+ value: 27.822999999999997
233
+ - type: map_at_10
234
+ value: 39.088
235
+ - type: map_at_100
236
+ value: 40.561
237
+ - type: map_at_1000
238
+ value: 40.69
239
+ - type: map_at_3
240
+ value: 35.701
241
+ - type: map_at_5
242
+ value: 37.556
243
+ - type: mrr_at_1
244
+ value: 33.906
245
+ - type: mrr_at_10
246
+ value: 44.527
247
+ - type: mrr_at_100
248
+ value: 45.403999999999996
249
+ - type: mrr_at_1000
250
+ value: 45.452
251
+ - type: mrr_at_3
252
+ value: 41.726
253
+ - type: mrr_at_5
254
+ value: 43.314
255
+ - type: ndcg_at_1
256
+ value: 33.906
257
+ - type: ndcg_at_10
258
+ value: 45.591
259
+ - type: ndcg_at_100
260
+ value: 51.041000000000004
261
+ - type: ndcg_at_1000
262
+ value: 53.1
263
+ - type: ndcg_at_3
264
+ value: 40.324
265
+ - type: ndcg_at_5
266
+ value: 42.723
267
+ - type: precision_at_1
268
+ value: 33.906
269
+ - type: precision_at_10
270
+ value: 8.655
271
+ - type: precision_at_100
272
+ value: 1.418
273
+ - type: precision_at_1000
274
+ value: 0.19499999999999998
275
+ - type: precision_at_3
276
+ value: 19.123
277
+ - type: precision_at_5
278
+ value: 13.963000000000001
279
+ - type: recall_at_1
280
+ value: 27.822999999999997
281
+ - type: recall_at_10
282
+ value: 58.63699999999999
283
+ - type: recall_at_100
284
+ value: 80.874
285
+ - type: recall_at_1000
286
+ value: 93.82000000000001
287
+ - type: recall_at_3
288
+ value: 44.116
289
+ - type: recall_at_5
290
+ value: 50.178999999999995
291
+ - task:
292
+ type: Retrieval
293
+ dataset:
294
+ type: BeIR/cqadupstack
295
+ name: MTEB CQADupstackEnglishRetrieval
296
+ config: default
297
+ split: test
298
+ revision: None
299
+ metrics:
300
+ - type: map_at_1
301
+ value: 26.823999999999998
302
+ - type: map_at_10
303
+ value: 37.006
304
+ - type: map_at_100
305
+ value: 38.256
306
+ - type: map_at_1000
307
+ value: 38.397999999999996
308
+ - type: map_at_3
309
+ value: 34.011
310
+ - type: map_at_5
311
+ value: 35.643
312
+ - type: mrr_at_1
313
+ value: 34.268
314
+ - type: mrr_at_10
315
+ value: 43.374
316
+ - type: mrr_at_100
317
+ value: 44.096000000000004
318
+ - type: mrr_at_1000
319
+ value: 44.144
320
+ - type: mrr_at_3
321
+ value: 41.008
322
+ - type: mrr_at_5
323
+ value: 42.359
324
+ - type: ndcg_at_1
325
+ value: 34.268
326
+ - type: ndcg_at_10
327
+ value: 43.02
328
+ - type: ndcg_at_100
329
+ value: 47.747
330
+ - type: ndcg_at_1000
331
+ value: 50.019999999999996
332
+ - type: ndcg_at_3
333
+ value: 38.687
334
+ - type: ndcg_at_5
335
+ value: 40.647
336
+ - type: precision_at_1
337
+ value: 34.268
338
+ - type: precision_at_10
339
+ value: 8.261000000000001
340
+ - type: precision_at_100
341
+ value: 1.376
342
+ - type: precision_at_1000
343
+ value: 0.189
344
+ - type: precision_at_3
345
+ value: 19.108
346
+ - type: precision_at_5
347
+ value: 13.489999999999998
348
+ - type: recall_at_1
349
+ value: 26.823999999999998
350
+ - type: recall_at_10
351
+ value: 53.84100000000001
352
+ - type: recall_at_100
353
+ value: 73.992
354
+ - type: recall_at_1000
355
+ value: 88.524
356
+ - type: recall_at_3
357
+ value: 40.711000000000006
358
+ - type: recall_at_5
359
+ value: 46.477000000000004
360
+ - task:
361
+ type: Retrieval
362
+ dataset:
363
+ type: BeIR/cqadupstack
364
+ name: MTEB CQADupstackGamingRetrieval
365
+ config: default
366
+ split: test
367
+ revision: None
368
+ metrics:
369
+ - type: map_at_1
370
+ value: 34.307
371
+ - type: map_at_10
372
+ value: 45.144
373
+ - type: map_at_100
374
+ value: 46.351
375
+ - type: map_at_1000
376
+ value: 46.414
377
+ - type: map_at_3
378
+ value: 42.315000000000005
379
+ - type: map_at_5
380
+ value: 43.991
381
+ - type: mrr_at_1
382
+ value: 39.06
383
+ - type: mrr_at_10
384
+ value: 48.612
385
+ - type: mrr_at_100
386
+ value: 49.425000000000004
387
+ - type: mrr_at_1000
388
+ value: 49.458999999999996
389
+ - type: mrr_at_3
390
+ value: 46.144
391
+ - type: mrr_at_5
392
+ value: 47.654999999999994
393
+ - type: ndcg_at_1
394
+ value: 39.06
395
+ - type: ndcg_at_10
396
+ value: 50.647
397
+ - type: ndcg_at_100
398
+ value: 55.620000000000005
399
+ - type: ndcg_at_1000
400
+ value: 56.976000000000006
401
+ - type: ndcg_at_3
402
+ value: 45.705
403
+ - type: ndcg_at_5
404
+ value: 48.269
405
+ - type: precision_at_1
406
+ value: 39.06
407
+ - type: precision_at_10
408
+ value: 8.082
409
+ - type: precision_at_100
410
+ value: 1.161
411
+ - type: precision_at_1000
412
+ value: 0.133
413
+ - type: precision_at_3
414
+ value: 20.376
415
+ - type: precision_at_5
416
+ value: 14.069
417
+ - type: recall_at_1
418
+ value: 34.307
419
+ - type: recall_at_10
420
+ value: 63.497
421
+ - type: recall_at_100
422
+ value: 85.038
423
+ - type: recall_at_1000
424
+ value: 94.782
425
+ - type: recall_at_3
426
+ value: 50.209
427
+ - type: recall_at_5
428
+ value: 56.525000000000006
429
+ - task:
430
+ type: Retrieval
431
+ dataset:
432
+ type: BeIR/cqadupstack
433
+ name: MTEB CQADupstackGisRetrieval
434
+ config: default
435
+ split: test
436
+ revision: None
437
+ metrics:
438
+ - type: map_at_1
439
+ value: 26.448
440
+ - type: map_at_10
441
+ value: 34.86
442
+ - type: map_at_100
443
+ value: 36.004999999999995
444
+ - type: map_at_1000
445
+ value: 36.081
446
+ - type: map_at_3
447
+ value: 32.527
448
+ - type: map_at_5
449
+ value: 33.955
450
+ - type: mrr_at_1
451
+ value: 28.701
452
+ - type: mrr_at_10
453
+ value: 36.909
454
+ - type: mrr_at_100
455
+ value: 37.89
456
+ - type: mrr_at_1000
457
+ value: 37.945
458
+ - type: mrr_at_3
459
+ value: 34.576
460
+ - type: mrr_at_5
461
+ value: 35.966
462
+ - type: ndcg_at_1
463
+ value: 28.701
464
+ - type: ndcg_at_10
465
+ value: 39.507999999999996
466
+ - type: ndcg_at_100
467
+ value: 45.056000000000004
468
+ - type: ndcg_at_1000
469
+ value: 47.034
470
+ - type: ndcg_at_3
471
+ value: 34.985
472
+ - type: ndcg_at_5
473
+ value: 37.384
474
+ - type: precision_at_1
475
+ value: 28.701
476
+ - type: precision_at_10
477
+ value: 5.921
478
+ - type: precision_at_100
479
+ value: 0.914
480
+ - type: precision_at_1000
481
+ value: 0.11199999999999999
482
+ - type: precision_at_3
483
+ value: 14.689
484
+ - type: precision_at_5
485
+ value: 10.237
486
+ - type: recall_at_1
487
+ value: 26.448
488
+ - type: recall_at_10
489
+ value: 51.781
490
+ - type: recall_at_100
491
+ value: 77.142
492
+ - type: recall_at_1000
493
+ value: 92.10000000000001
494
+ - type: recall_at_3
495
+ value: 39.698
496
+ - type: recall_at_5
497
+ value: 45.469
498
+ - task:
499
+ type: Retrieval
500
+ dataset:
501
+ type: BeIR/cqadupstack
502
+ name: MTEB CQADupstackMathematicaRetrieval
503
+ config: default
504
+ split: test
505
+ revision: None
506
+ metrics:
507
+ - type: map_at_1
508
+ value: 14.174000000000001
509
+ - type: map_at_10
510
+ value: 22.019
511
+ - type: map_at_100
512
+ value: 23.18
513
+ - type: map_at_1000
514
+ value: 23.304
515
+ - type: map_at_3
516
+ value: 19.332
517
+ - type: map_at_5
518
+ value: 20.816000000000003
519
+ - type: mrr_at_1
520
+ value: 17.785999999999998
521
+ - type: mrr_at_10
522
+ value: 26.233
523
+ - type: mrr_at_100
524
+ value: 27.254
525
+ - type: mrr_at_1000
526
+ value: 27.328000000000003
527
+ - type: mrr_at_3
528
+ value: 23.653
529
+ - type: mrr_at_5
530
+ value: 25.095
531
+ - type: ndcg_at_1
532
+ value: 17.785999999999998
533
+ - type: ndcg_at_10
534
+ value: 27.236
535
+ - type: ndcg_at_100
536
+ value: 32.932
537
+ - type: ndcg_at_1000
538
+ value: 36.134
539
+ - type: ndcg_at_3
540
+ value: 22.33
541
+ - type: ndcg_at_5
542
+ value: 24.573999999999998
543
+ - type: precision_at_1
544
+ value: 17.785999999999998
545
+ - type: precision_at_10
546
+ value: 5.286
547
+ - type: precision_at_100
548
+ value: 0.9369999999999999
549
+ - type: precision_at_1000
550
+ value: 0.136
551
+ - type: precision_at_3
552
+ value: 11.07
553
+ - type: precision_at_5
554
+ value: 8.308
555
+ - type: recall_at_1
556
+ value: 14.174000000000001
557
+ - type: recall_at_10
558
+ value: 39.135
559
+ - type: recall_at_100
560
+ value: 64.095
561
+ - type: recall_at_1000
562
+ value: 87.485
563
+ - type: recall_at_3
564
+ value: 25.496999999999996
565
+ - type: recall_at_5
566
+ value: 31.148999999999997
567
+ - task:
568
+ type: Retrieval
569
+ dataset:
570
+ type: BeIR/cqadupstack
571
+ name: MTEB CQADupstackPhysicsRetrieval
572
+ config: default
573
+ split: test
574
+ revision: None
575
+ metrics:
576
+ - type: map_at_1
577
+ value: 24.371000000000002
578
+ - type: map_at_10
579
+ value: 33.074999999999996
580
+ - type: map_at_100
581
+ value: 34.486
582
+ - type: map_at_1000
583
+ value: 34.608
584
+ - type: map_at_3
585
+ value: 30.483
586
+ - type: map_at_5
587
+ value: 31.972
588
+ - type: mrr_at_1
589
+ value: 29.548000000000002
590
+ - type: mrr_at_10
591
+ value: 38.431
592
+ - type: mrr_at_100
593
+ value: 39.347
594
+ - type: mrr_at_1000
595
+ value: 39.4
596
+ - type: mrr_at_3
597
+ value: 35.980000000000004
598
+ - type: mrr_at_5
599
+ value: 37.413999999999994
600
+ - type: ndcg_at_1
601
+ value: 29.548000000000002
602
+ - type: ndcg_at_10
603
+ value: 38.552
604
+ - type: ndcg_at_100
605
+ value: 44.598
606
+ - type: ndcg_at_1000
607
+ value: 47.0
608
+ - type: ndcg_at_3
609
+ value: 34.109
610
+ - type: ndcg_at_5
611
+ value: 36.263
612
+ - type: precision_at_1
613
+ value: 29.548000000000002
614
+ - type: precision_at_10
615
+ value: 6.92
616
+ - type: precision_at_100
617
+ value: 1.179
618
+ - type: precision_at_1000
619
+ value: 0.159
620
+ - type: precision_at_3
621
+ value: 16.137
622
+ - type: precision_at_5
623
+ value: 11.511000000000001
624
+ - type: recall_at_1
625
+ value: 24.371000000000002
626
+ - type: recall_at_10
627
+ value: 49.586999999999996
628
+ - type: recall_at_100
629
+ value: 75.15899999999999
630
+ - type: recall_at_1000
631
+ value: 91.06
632
+ - type: recall_at_3
633
+ value: 37.09
634
+ - type: recall_at_5
635
+ value: 42.588
636
+ - task:
637
+ type: Retrieval
638
+ dataset:
639
+ type: BeIR/cqadupstack
640
+ name: MTEB CQADupstackProgrammersRetrieval
641
+ config: default
642
+ split: test
643
+ revision: None
644
+ metrics:
645
+ - type: map_at_1
646
+ value: 24.517
647
+ - type: map_at_10
648
+ value: 32.969
649
+ - type: map_at_100
650
+ value: 34.199
651
+ - type: map_at_1000
652
+ value: 34.322
653
+ - type: map_at_3
654
+ value: 30.270999999999997
655
+ - type: map_at_5
656
+ value: 31.863000000000003
657
+ - type: mrr_at_1
658
+ value: 30.479
659
+ - type: mrr_at_10
660
+ value: 38.633
661
+ - type: mrr_at_100
662
+ value: 39.522
663
+ - type: mrr_at_1000
664
+ value: 39.583
665
+ - type: mrr_at_3
666
+ value: 36.454
667
+ - type: mrr_at_5
668
+ value: 37.744
669
+ - type: ndcg_at_1
670
+ value: 30.479
671
+ - type: ndcg_at_10
672
+ value: 38.269
673
+ - type: ndcg_at_100
674
+ value: 43.91
675
+ - type: ndcg_at_1000
676
+ value: 46.564
677
+ - type: ndcg_at_3
678
+ value: 34.03
679
+ - type: ndcg_at_5
680
+ value: 36.155
681
+ - type: precision_at_1
682
+ value: 30.479
683
+ - type: precision_at_10
684
+ value: 6.815
685
+ - type: precision_at_100
686
+ value: 1.138
687
+ - type: precision_at_1000
688
+ value: 0.158
689
+ - type: precision_at_3
690
+ value: 16.058
691
+ - type: precision_at_5
692
+ value: 11.416
693
+ - type: recall_at_1
694
+ value: 24.517
695
+ - type: recall_at_10
696
+ value: 48.559000000000005
697
+ - type: recall_at_100
698
+ value: 73.307
699
+ - type: recall_at_1000
700
+ value: 91.508
701
+ - type: recall_at_3
702
+ value: 36.563
703
+ - type: recall_at_5
704
+ value: 42.375
705
+ - task:
706
+ type: Retrieval
707
+ dataset:
708
+ type: BeIR/cqadupstack
709
+ name: MTEB CQADupstackRetrieval
710
+ config: default
711
+ split: test
712
+ revision: None
713
+ metrics:
714
+ - type: map_at_1
715
+ value: 24.336166666666664
716
+ - type: map_at_10
717
+ value: 32.80791666666667
718
+ - type: map_at_100
719
+ value: 34.043416666666666
720
+ - type: map_at_1000
721
+ value: 34.162749999999996
722
+ - type: map_at_3
723
+ value: 30.187083333333337
724
+ - type: map_at_5
725
+ value: 31.637833333333337
726
+ - type: mrr_at_1
727
+ value: 28.669583333333343
728
+ - type: mrr_at_10
729
+ value: 36.88616666666667
730
+ - type: mrr_at_100
731
+ value: 37.80233333333333
732
+ - type: mrr_at_1000
733
+ value: 37.86141666666666
734
+ - type: mrr_at_3
735
+ value: 34.537416666666665
736
+ - type: mrr_at_5
737
+ value: 35.84275
738
+ - type: ndcg_at_1
739
+ value: 28.669583333333343
740
+ - type: ndcg_at_10
741
+ value: 37.956916666666665
742
+ - type: ndcg_at_100
743
+ value: 43.39475
744
+ - type: ndcg_at_1000
745
+ value: 45.79925
746
+ - type: ndcg_at_3
747
+ value: 33.43683333333334
748
+ - type: ndcg_at_5
749
+ value: 35.52575
750
+ - type: precision_at_1
751
+ value: 28.669583333333343
752
+ - type: precision_at_10
753
+ value: 6.603833333333335
754
+ - type: precision_at_100
755
+ value: 1.1079166666666667
756
+ - type: precision_at_1000
757
+ value: 0.15208333333333335
758
+ - type: precision_at_3
759
+ value: 15.338750000000001
760
+ - type: precision_at_5
761
+ value: 10.88775
762
+ - type: recall_at_1
763
+ value: 24.336166666666664
764
+ - type: recall_at_10
765
+ value: 49.19358333333333
766
+ - type: recall_at_100
767
+ value: 73.07583333333334
768
+ - type: recall_at_1000
769
+ value: 89.81675
770
+ - type: recall_at_3
771
+ value: 36.54091666666667
772
+ - type: recall_at_5
773
+ value: 41.919250000000005
774
+ - task:
775
+ type: Retrieval
776
+ dataset:
777
+ type: BeIR/cqadupstack
778
+ name: MTEB CQADupstackStatsRetrieval
779
+ config: default
780
+ split: test
781
+ revision: None
782
+ metrics:
783
+ - type: map_at_1
784
+ value: 23.388
785
+ - type: map_at_10
786
+ value: 29.408
787
+ - type: map_at_100
788
+ value: 30.452
789
+ - type: map_at_1000
790
+ value: 30.546
791
+ - type: map_at_3
792
+ value: 27.139000000000003
793
+ - type: map_at_5
794
+ value: 28.402
795
+ - type: mrr_at_1
796
+ value: 25.46
797
+ - type: mrr_at_10
798
+ value: 31.966
799
+ - type: mrr_at_100
800
+ value: 32.879999999999995
801
+ - type: mrr_at_1000
802
+ value: 32.944
803
+ - type: mrr_at_3
804
+ value: 29.755
805
+ - type: mrr_at_5
806
+ value: 30.974
807
+ - type: ndcg_at_1
808
+ value: 25.46
809
+ - type: ndcg_at_10
810
+ value: 33.449
811
+ - type: ndcg_at_100
812
+ value: 38.67
813
+ - type: ndcg_at_1000
814
+ value: 41.035
815
+ - type: ndcg_at_3
816
+ value: 29.048000000000002
817
+ - type: ndcg_at_5
818
+ value: 31.127
819
+ - type: precision_at_1
820
+ value: 25.46
821
+ - type: precision_at_10
822
+ value: 5.199
823
+ - type: precision_at_100
824
+ value: 0.8670000000000001
825
+ - type: precision_at_1000
826
+ value: 0.11399999999999999
827
+ - type: precision_at_3
828
+ value: 12.168
829
+ - type: precision_at_5
830
+ value: 8.62
831
+ - type: recall_at_1
832
+ value: 23.388
833
+ - type: recall_at_10
834
+ value: 43.428
835
+ - type: recall_at_100
836
+ value: 67.245
837
+ - type: recall_at_1000
838
+ value: 84.75399999999999
839
+ - type: recall_at_3
840
+ value: 31.416
841
+ - type: recall_at_5
842
+ value: 36.451
843
+ - task:
844
+ type: Retrieval
845
+ dataset:
846
+ type: BeIR/cqadupstack
847
+ name: MTEB CQADupstackTexRetrieval
848
+ config: default
849
+ split: test
850
+ revision: None
851
+ metrics:
852
+ - type: map_at_1
853
+ value: 17.136000000000003
854
+ - type: map_at_10
855
+ value: 24.102999999999998
856
+ - type: map_at_100
857
+ value: 25.219
858
+ - type: map_at_1000
859
+ value: 25.344
860
+ - type: map_at_3
861
+ value: 22.004
862
+ - type: map_at_5
863
+ value: 23.145
864
+ - type: mrr_at_1
865
+ value: 20.613
866
+ - type: mrr_at_10
867
+ value: 27.753
868
+ - type: mrr_at_100
869
+ value: 28.698
870
+ - type: mrr_at_1000
871
+ value: 28.776000000000003
872
+ - type: mrr_at_3
873
+ value: 25.711000000000002
874
+ - type: mrr_at_5
875
+ value: 26.795
876
+ - type: ndcg_at_1
877
+ value: 20.613
878
+ - type: ndcg_at_10
879
+ value: 28.510999999999996
880
+ - type: ndcg_at_100
881
+ value: 33.924
882
+ - type: ndcg_at_1000
883
+ value: 36.849
884
+ - type: ndcg_at_3
885
+ value: 24.664
886
+ - type: ndcg_at_5
887
+ value: 26.365
888
+ - type: precision_at_1
889
+ value: 20.613
890
+ - type: precision_at_10
891
+ value: 5.069
892
+ - type: precision_at_100
893
+ value: 0.918
894
+ - type: precision_at_1000
895
+ value: 0.136
896
+ - type: precision_at_3
897
+ value: 11.574
898
+ - type: precision_at_5
899
+ value: 8.211
900
+ - type: recall_at_1
901
+ value: 17.136000000000003
902
+ - type: recall_at_10
903
+ value: 38.232
904
+ - type: recall_at_100
905
+ value: 62.571
906
+ - type: recall_at_1000
907
+ value: 83.23
908
+ - type: recall_at_3
909
+ value: 27.468999999999998
910
+ - type: recall_at_5
911
+ value: 31.852999999999998
912
+ - task:
913
+ type: Retrieval
914
+ dataset:
915
+ type: BeIR/cqadupstack
916
+ name: MTEB CQADupstackUnixRetrieval
917
+ config: default
918
+ split: test
919
+ revision: None
920
+ metrics:
921
+ - type: map_at_1
922
+ value: 25.580000000000002
923
+ - type: map_at_10
924
+ value: 33.449
925
+ - type: map_at_100
926
+ value: 34.58
927
+ - type: map_at_1000
928
+ value: 34.692
929
+ - type: map_at_3
930
+ value: 30.660999999999998
931
+ - type: map_at_5
932
+ value: 32.425
933
+ - type: mrr_at_1
934
+ value: 30.037000000000003
935
+ - type: mrr_at_10
936
+ value: 37.443
937
+ - type: mrr_at_100
938
+ value: 38.32
939
+ - type: mrr_at_1000
940
+ value: 38.384
941
+ - type: mrr_at_3
942
+ value: 34.778999999999996
943
+ - type: mrr_at_5
944
+ value: 36.458
945
+ - type: ndcg_at_1
946
+ value: 30.037000000000003
947
+ - type: ndcg_at_10
948
+ value: 38.46
949
+ - type: ndcg_at_100
950
+ value: 43.746
951
+ - type: ndcg_at_1000
952
+ value: 46.28
953
+ - type: ndcg_at_3
954
+ value: 33.52
955
+ - type: ndcg_at_5
956
+ value: 36.175000000000004
957
+ - type: precision_at_1
958
+ value: 30.037000000000003
959
+ - type: precision_at_10
960
+ value: 6.418
961
+ - type: precision_at_100
962
+ value: 1.0210000000000001
963
+ - type: precision_at_1000
964
+ value: 0.136
965
+ - type: precision_at_3
966
+ value: 15.018999999999998
967
+ - type: precision_at_5
968
+ value: 10.877
969
+ - type: recall_at_1
970
+ value: 25.580000000000002
971
+ - type: recall_at_10
972
+ value: 49.830000000000005
973
+ - type: recall_at_100
974
+ value: 73.04899999999999
975
+ - type: recall_at_1000
976
+ value: 90.751
977
+ - type: recall_at_3
978
+ value: 36.370999999999995
979
+ - type: recall_at_5
980
+ value: 43.104
981
+ - task:
982
+ type: Retrieval
983
+ dataset:
984
+ type: BeIR/cqadupstack
985
+ name: MTEB CQADupstackWebmastersRetrieval
986
+ config: default
987
+ split: test
988
+ revision: None
989
+ metrics:
990
+ - type: map_at_1
991
+ value: 24.071
992
+ - type: map_at_10
993
+ value: 33.384
994
+ - type: map_at_100
995
+ value: 35.004999999999995
996
+ - type: map_at_1000
997
+ value: 35.215999999999994
998
+ - type: map_at_3
999
+ value: 30.459000000000003
1000
+ - type: map_at_5
1001
+ value: 31.769
1002
+ - type: mrr_at_1
1003
+ value: 28.854000000000003
1004
+ - type: mrr_at_10
1005
+ value: 37.512
1006
+ - type: mrr_at_100
1007
+ value: 38.567
1008
+ - type: mrr_at_1000
1009
+ value: 38.618
1010
+ - type: mrr_at_3
1011
+ value: 35.211
1012
+ - type: mrr_at_5
1013
+ value: 36.13
1014
+ - type: ndcg_at_1
1015
+ value: 28.854000000000003
1016
+ - type: ndcg_at_10
1017
+ value: 39.216
1018
+ - type: ndcg_at_100
1019
+ value: 45.214
1020
+ - type: ndcg_at_1000
1021
+ value: 47.573
1022
+ - type: ndcg_at_3
1023
+ value: 34.597
1024
+ - type: ndcg_at_5
1025
+ value: 36.063
1026
+ - type: precision_at_1
1027
+ value: 28.854000000000003
1028
+ - type: precision_at_10
1029
+ value: 7.648000000000001
1030
+ - type: precision_at_100
1031
+ value: 1.545
1032
+ - type: precision_at_1000
1033
+ value: 0.241
1034
+ - type: precision_at_3
1035
+ value: 16.667
1036
+ - type: precision_at_5
1037
+ value: 11.818
1038
+ - type: recall_at_1
1039
+ value: 24.071
1040
+ - type: recall_at_10
1041
+ value: 50.802
1042
+ - type: recall_at_100
1043
+ value: 77.453
1044
+ - type: recall_at_1000
1045
+ value: 92.304
1046
+ - type: recall_at_3
1047
+ value: 36.846000000000004
1048
+ - type: recall_at_5
1049
+ value: 41.14
1050
+ - task:
1051
+ type: Retrieval
1052
+ dataset:
1053
+ type: BeIR/cqadupstack
1054
+ name: MTEB CQADupstackWordpressRetrieval
1055
+ config: default
1056
+ split: test
1057
+ revision: None
1058
+ metrics:
1059
+ - type: map_at_1
1060
+ value: 23.395
1061
+ - type: map_at_10
1062
+ value: 29.189999999999998
1063
+ - type: map_at_100
1064
+ value: 30.226999999999997
1065
+ - type: map_at_1000
1066
+ value: 30.337999999999997
1067
+ - type: map_at_3
1068
+ value: 27.342
1069
+ - type: map_at_5
1070
+ value: 28.116999999999997
1071
+ - type: mrr_at_1
1072
+ value: 25.323
1073
+ - type: mrr_at_10
1074
+ value: 31.241000000000003
1075
+ - type: mrr_at_100
1076
+ value: 32.225
1077
+ - type: mrr_at_1000
1078
+ value: 32.304
1079
+ - type: mrr_at_3
1080
+ value: 29.452
1081
+ - type: mrr_at_5
1082
+ value: 30.209000000000003
1083
+ - type: ndcg_at_1
1084
+ value: 25.323
1085
+ - type: ndcg_at_10
1086
+ value: 33.024
1087
+ - type: ndcg_at_100
1088
+ value: 38.279
1089
+ - type: ndcg_at_1000
1090
+ value: 41.026
1091
+ - type: ndcg_at_3
1092
+ value: 29.243000000000002
1093
+ - type: ndcg_at_5
1094
+ value: 30.564000000000004
1095
+ - type: precision_at_1
1096
+ value: 25.323
1097
+ - type: precision_at_10
1098
+ value: 4.972
1099
+ - type: precision_at_100
1100
+ value: 0.8210000000000001
1101
+ - type: precision_at_1000
1102
+ value: 0.116
1103
+ - type: precision_at_3
1104
+ value: 12.076
1105
+ - type: precision_at_5
1106
+ value: 8.133
1107
+ - type: recall_at_1
1108
+ value: 23.395
1109
+ - type: recall_at_10
1110
+ value: 42.994
1111
+ - type: recall_at_100
1112
+ value: 66.985
1113
+ - type: recall_at_1000
1114
+ value: 87.483
1115
+ - type: recall_at_3
1116
+ value: 32.505
1117
+ - type: recall_at_5
1118
+ value: 35.721000000000004
1119
+ - task:
1120
+ type: Retrieval
1121
+ dataset:
1122
+ type: climate-fever
1123
+ name: MTEB ClimateFEVER
1124
+ config: default
1125
+ split: test
1126
+ revision: None
1127
+ metrics:
1128
+ - type: map_at_1
1129
+ value: 8.322000000000001
1130
+ - type: map_at_10
1131
+ value: 14.491000000000001
1132
+ - type: map_at_100
1133
+ value: 16.066
1134
+ - type: map_at_1000
1135
+ value: 16.238
1136
+ - type: map_at_3
1137
+ value: 12.235
1138
+ - type: map_at_5
1139
+ value: 13.422999999999998
1140
+ - type: mrr_at_1
1141
+ value: 19.479
1142
+ - type: mrr_at_10
1143
+ value: 29.38
1144
+ - type: mrr_at_100
1145
+ value: 30.520999999999997
1146
+ - type: mrr_at_1000
1147
+ value: 30.570999999999998
1148
+ - type: mrr_at_3
1149
+ value: 26.395000000000003
1150
+ - type: mrr_at_5
1151
+ value: 27.982000000000003
1152
+ - type: ndcg_at_1
1153
+ value: 19.479
1154
+ - type: ndcg_at_10
1155
+ value: 21.215
1156
+ - type: ndcg_at_100
1157
+ value: 27.966
1158
+ - type: ndcg_at_1000
1159
+ value: 31.324
1160
+ - type: ndcg_at_3
1161
+ value: 17.194000000000003
1162
+ - type: ndcg_at_5
1163
+ value: 18.593
1164
+ - type: precision_at_1
1165
+ value: 19.479
1166
+ - type: precision_at_10
1167
+ value: 6.5280000000000005
1168
+ - type: precision_at_100
1169
+ value: 1.359
1170
+ - type: precision_at_1000
1171
+ value: 0.198
1172
+ - type: precision_at_3
1173
+ value: 12.703999999999999
1174
+ - type: precision_at_5
1175
+ value: 9.655
1176
+ - type: recall_at_1
1177
+ value: 8.322000000000001
1178
+ - type: recall_at_10
1179
+ value: 26.165
1180
+ - type: recall_at_100
1181
+ value: 49.573
1182
+ - type: recall_at_1000
1183
+ value: 68.501
1184
+ - type: recall_at_3
1185
+ value: 16.179
1186
+ - type: recall_at_5
1187
+ value: 20.175
1188
+ - task:
1189
+ type: Retrieval
1190
+ dataset:
1191
+ type: dbpedia-entity
1192
+ name: MTEB DBPedia
1193
+ config: default
1194
+ split: test
1195
+ revision: None
1196
+ metrics:
1197
+ - type: map_at_1
1198
+ value: 8.003
1199
+ - type: map_at_10
1200
+ value: 16.087
1201
+ - type: map_at_100
1202
+ value: 21.363
1203
+ - type: map_at_1000
1204
+ value: 22.64
1205
+ - type: map_at_3
1206
+ value: 12.171999999999999
1207
+ - type: map_at_5
1208
+ value: 13.866
1209
+ - type: mrr_at_1
1210
+ value: 61.25000000000001
1211
+ - type: mrr_at_10
1212
+ value: 68.626
1213
+ - type: mrr_at_100
1214
+ value: 69.134
1215
+ - type: mrr_at_1000
1216
+ value: 69.144
1217
+ - type: mrr_at_3
1218
+ value: 67.042
1219
+ - type: mrr_at_5
1220
+ value: 67.929
1221
+ - type: ndcg_at_1
1222
+ value: 49.0
1223
+ - type: ndcg_at_10
1224
+ value: 34.132
1225
+ - type: ndcg_at_100
1226
+ value: 37.545
1227
+ - type: ndcg_at_1000
1228
+ value: 44.544
1229
+ - type: ndcg_at_3
1230
+ value: 38.946999999999996
1231
+ - type: ndcg_at_5
1232
+ value: 36.317
1233
+ - type: precision_at_1
1234
+ value: 61.25000000000001
1235
+ - type: precision_at_10
1236
+ value: 26.325
1237
+ - type: precision_at_100
1238
+ value: 8.173
1239
+ - type: precision_at_1000
1240
+ value: 1.778
1241
+ - type: precision_at_3
1242
+ value: 41.667
1243
+ - type: precision_at_5
1244
+ value: 34.300000000000004
1245
+ - type: recall_at_1
1246
+ value: 8.003
1247
+ - type: recall_at_10
1248
+ value: 20.577
1249
+ - type: recall_at_100
1250
+ value: 41.884
1251
+ - type: recall_at_1000
1252
+ value: 64.36500000000001
1253
+ - type: recall_at_3
1254
+ value: 13.602
1255
+ - type: recall_at_5
1256
+ value: 16.41
1257
+ - task:
1258
+ type: Classification
1259
+ dataset:
1260
+ type: mteb/emotion
1261
+ name: MTEB EmotionClassification
1262
+ config: default
1263
+ split: test
1264
+ revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
1265
+ metrics:
1266
+ - type: accuracy
1267
+ value: 45.835
1268
+ - type: f1
1269
+ value: 41.66455981281837
1270
+ - task:
1271
+ type: Retrieval
1272
+ dataset:
1273
+ type: fever
1274
+ name: MTEB FEVER
1275
+ config: default
1276
+ split: test
1277
+ revision: None
1278
+ metrics:
1279
+ - type: map_at_1
1280
+ value: 55.717000000000006
1281
+ - type: map_at_10
1282
+ value: 66.34100000000001
1283
+ - type: map_at_100
1284
+ value: 66.776
1285
+ - type: map_at_1000
1286
+ value: 66.794
1287
+ - type: map_at_3
1288
+ value: 64.386
1289
+ - type: map_at_5
1290
+ value: 65.566
1291
+ - type: mrr_at_1
1292
+ value: 60.141
1293
+ - type: mrr_at_10
1294
+ value: 70.928
1295
+ - type: mrr_at_100
1296
+ value: 71.29299999999999
1297
+ - type: mrr_at_1000
1298
+ value: 71.30199999999999
1299
+ - type: mrr_at_3
1300
+ value: 69.07900000000001
1301
+ - type: mrr_at_5
1302
+ value: 70.244
1303
+ - type: ndcg_at_1
1304
+ value: 60.141
1305
+ - type: ndcg_at_10
1306
+ value: 71.90100000000001
1307
+ - type: ndcg_at_100
1308
+ value: 73.836
1309
+ - type: ndcg_at_1000
1310
+ value: 74.214
1311
+ - type: ndcg_at_3
1312
+ value: 68.203
1313
+ - type: ndcg_at_5
1314
+ value: 70.167
1315
+ - type: precision_at_1
1316
+ value: 60.141
1317
+ - type: precision_at_10
1318
+ value: 9.268
1319
+ - type: precision_at_100
1320
+ value: 1.03
1321
+ - type: precision_at_1000
1322
+ value: 0.108
1323
+ - type: precision_at_3
1324
+ value: 27.028000000000002
1325
+ - type: precision_at_5
1326
+ value: 17.342
1327
+ - type: recall_at_1
1328
+ value: 55.717000000000006
1329
+ - type: recall_at_10
1330
+ value: 84.66799999999999
1331
+ - type: recall_at_100
1332
+ value: 93.28
1333
+ - type: recall_at_1000
1334
+ value: 95.887
1335
+ - type: recall_at_3
1336
+ value: 74.541
1337
+ - type: recall_at_5
1338
+ value: 79.389
1339
+ - task:
1340
+ type: Retrieval
1341
+ dataset:
1342
+ type: fiqa
1343
+ name: MTEB FiQA2018
1344
+ config: default
1345
+ split: test
1346
+ revision: None
1347
+ metrics:
1348
+ - type: map_at_1
1349
+ value: 17.744
1350
+ - type: map_at_10
1351
+ value: 29.554000000000002
1352
+ - type: map_at_100
1353
+ value: 31.180000000000003
1354
+ - type: map_at_1000
1355
+ value: 31.372
1356
+ - type: map_at_3
1357
+ value: 25.6
1358
+ - type: map_at_5
1359
+ value: 27.642
1360
+ - type: mrr_at_1
1361
+ value: 35.802
1362
+ - type: mrr_at_10
1363
+ value: 44.812999999999995
1364
+ - type: mrr_at_100
1365
+ value: 45.56
1366
+ - type: mrr_at_1000
1367
+ value: 45.606
1368
+ - type: mrr_at_3
1369
+ value: 42.181000000000004
1370
+ - type: mrr_at_5
1371
+ value: 43.516
1372
+ - type: ndcg_at_1
1373
+ value: 35.802
1374
+ - type: ndcg_at_10
1375
+ value: 37.269999999999996
1376
+ - type: ndcg_at_100
1377
+ value: 43.575
1378
+ - type: ndcg_at_1000
1379
+ value: 46.916000000000004
1380
+ - type: ndcg_at_3
1381
+ value: 33.511
1382
+ - type: ndcg_at_5
1383
+ value: 34.504000000000005
1384
+ - type: precision_at_1
1385
+ value: 35.802
1386
+ - type: precision_at_10
1387
+ value: 10.448
1388
+ - type: precision_at_100
1389
+ value: 1.7129999999999999
1390
+ - type: precision_at_1000
1391
+ value: 0.231
1392
+ - type: precision_at_3
1393
+ value: 22.531000000000002
1394
+ - type: precision_at_5
1395
+ value: 16.512
1396
+ - type: recall_at_1
1397
+ value: 17.744
1398
+ - type: recall_at_10
1399
+ value: 44.616
1400
+ - type: recall_at_100
1401
+ value: 68.51899999999999
1402
+ - type: recall_at_1000
1403
+ value: 88.495
1404
+ - type: recall_at_3
1405
+ value: 30.235
1406
+ - type: recall_at_5
1407
+ value: 35.821999999999996
1408
+ - task:
1409
+ type: Retrieval
1410
+ dataset:
1411
+ type: hotpotqa
1412
+ name: MTEB HotpotQA
1413
+ config: default
1414
+ split: test
1415
+ revision: None
1416
+ metrics:
1417
+ - type: map_at_1
1418
+ value: 33.315
1419
+ - type: map_at_10
1420
+ value: 45.932
1421
+ - type: map_at_100
1422
+ value: 46.708
1423
+ - type: map_at_1000
1424
+ value: 46.778999999999996
1425
+ - type: map_at_3
1426
+ value: 43.472
1427
+ - type: map_at_5
1428
+ value: 45.022
1429
+ - type: mrr_at_1
1430
+ value: 66.631
1431
+ - type: mrr_at_10
1432
+ value: 73.083
1433
+ - type: mrr_at_100
1434
+ value: 73.405
1435
+ - type: mrr_at_1000
1436
+ value: 73.421
1437
+ - type: mrr_at_3
1438
+ value: 71.756
1439
+ - type: mrr_at_5
1440
+ value: 72.616
1441
+ - type: ndcg_at_1
1442
+ value: 66.631
1443
+ - type: ndcg_at_10
1444
+ value: 54.949000000000005
1445
+ - type: ndcg_at_100
1446
+ value: 57.965
1447
+ - type: ndcg_at_1000
1448
+ value: 59.467000000000006
1449
+ - type: ndcg_at_3
1450
+ value: 51.086
1451
+ - type: ndcg_at_5
1452
+ value: 53.272
1453
+ - type: precision_at_1
1454
+ value: 66.631
1455
+ - type: precision_at_10
1456
+ value: 11.178
1457
+ - type: precision_at_100
1458
+ value: 1.3559999999999999
1459
+ - type: precision_at_1000
1460
+ value: 0.156
1461
+ - type: precision_at_3
1462
+ value: 31.582
1463
+ - type: precision_at_5
1464
+ value: 20.678
1465
+ - type: recall_at_1
1466
+ value: 33.315
1467
+ - type: recall_at_10
1468
+ value: 55.888000000000005
1469
+ - type: recall_at_100
1470
+ value: 67.812
1471
+ - type: recall_at_1000
1472
+ value: 77.839
1473
+ - type: recall_at_3
1474
+ value: 47.373
1475
+ - type: recall_at_5
1476
+ value: 51.695
1477
+ - task:
1478
+ type: Classification
1479
+ dataset:
1480
+ type: mteb/imdb
1481
+ name: MTEB ImdbClassification
1482
+ config: default
1483
+ split: test
1484
+ revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
1485
+ metrics:
1486
+ - type: accuracy
1487
+ value: 66.424
1488
+ - type: ap
1489
+ value: 61.132235499939256
1490
+ - type: f1
1491
+ value: 66.07094958225315
1492
+ - task:
1493
+ type: Retrieval
1494
+ dataset:
1495
+ type: msmarco
1496
+ name: MTEB MSMARCO
1497
+ config: default
1498
+ split: dev
1499
+ revision: None
1500
+ metrics:
1501
+ - type: map_at_1
1502
+ value: 21.575
1503
+ - type: map_at_10
1504
+ value: 33.509
1505
+ - type: map_at_100
1506
+ value: 34.725
1507
+ - type: map_at_1000
1508
+ value: 34.775
1509
+ - type: map_at_3
1510
+ value: 29.673
1511
+ - type: map_at_5
1512
+ value: 31.805
1513
+ - type: mrr_at_1
1514
+ value: 22.235
1515
+ - type: mrr_at_10
1516
+ value: 34.1
1517
+ - type: mrr_at_100
1518
+ value: 35.254999999999995
1519
+ - type: mrr_at_1000
1520
+ value: 35.299
1521
+ - type: mrr_at_3
1522
+ value: 30.334
1523
+ - type: mrr_at_5
1524
+ value: 32.419
1525
+ - type: ndcg_at_1
1526
+ value: 22.235
1527
+ - type: ndcg_at_10
1528
+ value: 40.341
1529
+ - type: ndcg_at_100
1530
+ value: 46.161
1531
+ - type: ndcg_at_1000
1532
+ value: 47.400999999999996
1533
+ - type: ndcg_at_3
1534
+ value: 32.482
1535
+ - type: ndcg_at_5
1536
+ value: 36.269
1537
+ - type: precision_at_1
1538
+ value: 22.235
1539
+ - type: precision_at_10
1540
+ value: 6.422999999999999
1541
+ - type: precision_at_100
1542
+ value: 0.9329999999999999
1543
+ - type: precision_at_1000
1544
+ value: 0.104
1545
+ - type: precision_at_3
1546
+ value: 13.835
1547
+ - type: precision_at_5
1548
+ value: 10.226
1549
+ - type: recall_at_1
1550
+ value: 21.575
1551
+ - type: recall_at_10
1552
+ value: 61.448
1553
+ - type: recall_at_100
1554
+ value: 88.289
1555
+ - type: recall_at_1000
1556
+ value: 97.76899999999999
1557
+ - type: recall_at_3
1558
+ value: 39.971000000000004
1559
+ - type: recall_at_5
1560
+ value: 49.053000000000004
1561
+ - task:
1562
+ type: Classification
1563
+ dataset:
1564
+ type: mteb/mtop_domain
1565
+ name: MTEB MTOPDomainClassification (en)
1566
+ config: en
1567
+ split: test
1568
+ revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
1569
+ metrics:
1570
+ - type: accuracy
1571
+ value: 92.83401732786137
1572
+ - type: f1
1573
+ value: 92.47678691291068
1574
+ - task:
1575
+ type: Classification
1576
+ dataset:
1577
+ type: mteb/mtop_intent
1578
+ name: MTEB MTOPIntentClassification (en)
1579
+ config: en
1580
+ split: test
1581
+ revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
1582
+ metrics:
1583
+ - type: accuracy
1584
+ value: 76.08983128134975
1585
+ - type: f1
1586
+ value: 59.782936393820904
1587
+ - task:
1588
+ type: Classification
1589
+ dataset:
1590
+ type: mteb/amazon_massive_intent
1591
+ name: MTEB MassiveIntentClassification (en)
1592
+ config: en
1593
+ split: test
1594
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
1595
+ metrics:
1596
+ - type: accuracy
1597
+ value: 72.73032952252858
1598
+ - type: f1
1599
+ value: 70.72684765888265
1600
+ - task:
1601
+ type: Classification
1602
+ dataset:
1603
+ type: mteb/amazon_massive_scenario
1604
+ name: MTEB MassiveScenarioClassification (en)
1605
+ config: en
1606
+ split: test
1607
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
1608
+ metrics:
1609
+ - type: accuracy
1610
+ value: 77.08473436449226
1611
+ - type: f1
1612
+ value: 77.31457411257054
1613
+ - task:
1614
+ type: Clustering
1615
+ dataset:
1616
+ type: mteb/medrxiv-clustering-p2p
1617
+ name: MTEB MedrxivClusteringP2P
1618
+ config: default
1619
+ split: test
1620
+ revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
1621
+ metrics:
1622
+ - type: v_measure
1623
+ value: 30.11980959210532
1624
+ - task:
1625
+ type: Clustering
1626
+ dataset:
1627
+ type: mteb/medrxiv-clustering-s2s
1628
+ name: MTEB MedrxivClusteringS2S
1629
+ config: default
1630
+ split: test
1631
+ revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
1632
+ metrics:
1633
+ - type: v_measure
1634
+ value: 25.2587629106119
1635
+ - task:
1636
+ type: Reranking
1637
+ dataset:
1638
+ type: mteb/mind_small
1639
+ name: MTEB MindSmallReranking
1640
+ config: default
1641
+ split: test
1642
+ revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
1643
+ metrics:
1644
+ - type: map
1645
+ value: 31.48268319779204
1646
+ - type: mrr
1647
+ value: 32.501885728964304
1648
+ - task:
1649
+ type: Retrieval
1650
+ dataset:
1651
+ type: nfcorpus
1652
+ name: MTEB NFCorpus
1653
+ config: default
1654
+ split: test
1655
+ revision: None
1656
+ metrics:
1657
+ - type: map_at_1
1658
+ value: 5.284
1659
+ - type: map_at_10
1660
+ value: 11.509
1661
+ - type: map_at_100
1662
+ value: 14.624
1663
+ - type: map_at_1000
1664
+ value: 16.035
1665
+ - type: map_at_3
1666
+ value: 8.347999999999999
1667
+ - type: map_at_5
1668
+ value: 9.919
1669
+ - type: mrr_at_1
1670
+ value: 43.344
1671
+ - type: mrr_at_10
1672
+ value: 52.303999999999995
1673
+ - type: mrr_at_100
1674
+ value: 52.994
1675
+ - type: mrr_at_1000
1676
+ value: 53.032999999999994
1677
+ - type: mrr_at_3
1678
+ value: 50.361
1679
+ - type: mrr_at_5
1680
+ value: 51.754
1681
+ - type: ndcg_at_1
1682
+ value: 41.176
1683
+ - type: ndcg_at_10
1684
+ value: 32.244
1685
+ - type: ndcg_at_100
1686
+ value: 29.916999999999998
1687
+ - type: ndcg_at_1000
1688
+ value: 38.753
1689
+ - type: ndcg_at_3
1690
+ value: 36.856
1691
+ - type: ndcg_at_5
1692
+ value: 35.394999999999996
1693
+ - type: precision_at_1
1694
+ value: 43.034
1695
+ - type: precision_at_10
1696
+ value: 24.118000000000002
1697
+ - type: precision_at_100
1698
+ value: 7.926
1699
+ - type: precision_at_1000
1700
+ value: 2.045
1701
+ - type: precision_at_3
1702
+ value: 34.675
1703
+ - type: precision_at_5
1704
+ value: 31.146
1705
+ - type: recall_at_1
1706
+ value: 5.284
1707
+ - type: recall_at_10
1708
+ value: 15.457
1709
+ - type: recall_at_100
1710
+ value: 30.914
1711
+ - type: recall_at_1000
1712
+ value: 63.788999999999994
1713
+ - type: recall_at_3
1714
+ value: 9.596
1715
+ - type: recall_at_5
1716
+ value: 12.391
1717
+ - task:
1718
+ type: Retrieval
1719
+ dataset:
1720
+ type: nq
1721
+ name: MTEB NQ
1722
+ config: default
1723
+ split: test
1724
+ revision: None
1725
+ metrics:
1726
+ - type: map_at_1
1727
+ value: 29.537999999999997
1728
+ - type: map_at_10
1729
+ value: 43.99
1730
+ - type: map_at_100
1731
+ value: 45.003
1732
+ - type: map_at_1000
1733
+ value: 45.04
1734
+ - type: map_at_3
1735
+ value: 39.814
1736
+ - type: map_at_5
1737
+ value: 42.166
1738
+ - type: mrr_at_1
1739
+ value: 33.256
1740
+ - type: mrr_at_10
1741
+ value: 46.487
1742
+ - type: mrr_at_100
1743
+ value: 47.264
1744
+ - type: mrr_at_1000
1745
+ value: 47.29
1746
+ - type: mrr_at_3
1747
+ value: 43.091
1748
+ - type: mrr_at_5
1749
+ value: 45.013999999999996
1750
+ - type: ndcg_at_1
1751
+ value: 33.256
1752
+ - type: ndcg_at_10
1753
+ value: 51.403
1754
+ - type: ndcg_at_100
1755
+ value: 55.706999999999994
1756
+ - type: ndcg_at_1000
1757
+ value: 56.586000000000006
1758
+ - type: ndcg_at_3
1759
+ value: 43.559
1760
+ - type: ndcg_at_5
1761
+ value: 47.426
1762
+ - type: precision_at_1
1763
+ value: 33.256
1764
+ - type: precision_at_10
1765
+ value: 8.540000000000001
1766
+ - type: precision_at_100
1767
+ value: 1.093
1768
+ - type: precision_at_1000
1769
+ value: 0.11800000000000001
1770
+ - type: precision_at_3
1771
+ value: 19.834
1772
+ - type: precision_at_5
1773
+ value: 14.143
1774
+ - type: recall_at_1
1775
+ value: 29.537999999999997
1776
+ - type: recall_at_10
1777
+ value: 71.5
1778
+ - type: recall_at_100
1779
+ value: 90.25
1780
+ - type: recall_at_1000
1781
+ value: 96.82600000000001
1782
+ - type: recall_at_3
1783
+ value: 51.108
1784
+ - type: recall_at_5
1785
+ value: 60.006
1786
+ - task:
1787
+ type: Retrieval
1788
+ dataset:
1789
+ type: quora
1790
+ name: MTEB QuoraRetrieval
1791
+ config: default
1792
+ split: test
1793
+ revision: None
1794
+ metrics:
1795
+ - type: map_at_1
1796
+ value: 70.526
1797
+ - type: map_at_10
1798
+ value: 84.342
1799
+ - type: map_at_100
1800
+ value: 84.985
1801
+ - type: map_at_1000
1802
+ value: 85.003
1803
+ - type: map_at_3
1804
+ value: 81.472
1805
+ - type: map_at_5
1806
+ value: 83.292
1807
+ - type: mrr_at_1
1808
+ value: 81.17
1809
+ - type: mrr_at_10
1810
+ value: 87.33999999999999
1811
+ - type: mrr_at_100
1812
+ value: 87.445
1813
+ - type: mrr_at_1000
1814
+ value: 87.446
1815
+ - type: mrr_at_3
1816
+ value: 86.387
1817
+ - type: mrr_at_5
1818
+ value: 87.042
1819
+ - type: ndcg_at_1
1820
+ value: 81.19
1821
+ - type: ndcg_at_10
1822
+ value: 88.088
1823
+ - type: ndcg_at_100
1824
+ value: 89.35
1825
+ - type: ndcg_at_1000
1826
+ value: 89.462
1827
+ - type: ndcg_at_3
1828
+ value: 85.319
1829
+ - type: ndcg_at_5
1830
+ value: 86.858
1831
+ - type: precision_at_1
1832
+ value: 81.19
1833
+ - type: precision_at_10
1834
+ value: 13.33
1835
+ - type: precision_at_100
1836
+ value: 1.528
1837
+ - type: precision_at_1000
1838
+ value: 0.157
1839
+ - type: precision_at_3
1840
+ value: 37.31
1841
+ - type: precision_at_5
1842
+ value: 24.512
1843
+ - type: recall_at_1
1844
+ value: 70.526
1845
+ - type: recall_at_10
1846
+ value: 95.166
1847
+ - type: recall_at_100
1848
+ value: 99.479
1849
+ - type: recall_at_1000
1850
+ value: 99.984
1851
+ - type: recall_at_3
1852
+ value: 87.124
1853
+ - type: recall_at_5
1854
+ value: 91.53
1855
+ - task:
1856
+ type: Clustering
1857
+ dataset:
1858
+ type: mteb/reddit-clustering
1859
+ name: MTEB RedditClustering
1860
+ config: default
1861
+ split: test
1862
+ revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
1863
+ metrics:
1864
+ - type: v_measure
1865
+ value: 45.049073872893494
1866
+ - task:
1867
+ type: Clustering
1868
+ dataset:
1869
+ type: mteb/reddit-clustering-p2p
1870
+ name: MTEB RedditClusteringP2P
1871
+ config: default
1872
+ split: test
1873
+ revision: 282350215ef01743dc01b456c7f5241fa8937f16
1874
+ metrics:
1875
+ - type: v_measure
1876
+ value: 55.13810914528368
1877
+ - task:
1878
+ type: Retrieval
1879
+ dataset:
1880
+ type: scidocs
1881
+ name: MTEB SCIDOCS
1882
+ config: default
1883
+ split: test
1884
+ revision: None
1885
+ metrics:
1886
+ - type: map_at_1
1887
+ value: 4.593
1888
+ - type: map_at_10
1889
+ value: 10.907
1890
+ - type: map_at_100
1891
+ value: 12.888
1892
+ - type: map_at_1000
1893
+ value: 13.167000000000002
1894
+ - type: map_at_3
1895
+ value: 7.936
1896
+ - type: map_at_5
1897
+ value: 9.31
1898
+ - type: mrr_at_1
1899
+ value: 22.7
1900
+ - type: mrr_at_10
1901
+ value: 32.509
1902
+ - type: mrr_at_100
1903
+ value: 33.69
1904
+ - type: mrr_at_1000
1905
+ value: 33.747
1906
+ - type: mrr_at_3
1907
+ value: 29.599999999999998
1908
+ - type: mrr_at_5
1909
+ value: 31.155
1910
+ - type: ndcg_at_1
1911
+ value: 22.7
1912
+ - type: ndcg_at_10
1913
+ value: 18.445
1914
+ - type: ndcg_at_100
1915
+ value: 26.241999999999997
1916
+ - type: ndcg_at_1000
1917
+ value: 31.409
1918
+ - type: ndcg_at_3
1919
+ value: 17.864
1920
+ - type: ndcg_at_5
1921
+ value: 15.232999999999999
1922
+ - type: precision_at_1
1923
+ value: 22.7
1924
+ - type: precision_at_10
1925
+ value: 9.43
1926
+ - type: precision_at_100
1927
+ value: 2.061
1928
+ - type: precision_at_1000
1929
+ value: 0.331
1930
+ - type: precision_at_3
1931
+ value: 16.467000000000002
1932
+ - type: precision_at_5
1933
+ value: 13.08
1934
+ - type: recall_at_1
1935
+ value: 4.593
1936
+ - type: recall_at_10
1937
+ value: 19.115
1938
+ - type: recall_at_100
1939
+ value: 41.82
1940
+ - type: recall_at_1000
1941
+ value: 67.167
1942
+ - type: recall_at_3
1943
+ value: 9.983
1944
+ - type: recall_at_5
1945
+ value: 13.218
1946
+ - task:
1947
+ type: STS
1948
+ dataset:
1949
+ type: mteb/sickr-sts
1950
+ name: MTEB SICK-R
1951
+ config: default
1952
+ split: test
1953
+ revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
1954
+ metrics:
1955
+ - type: cos_sim_pearson
1956
+ value: 82.94432059816452
1957
+ - type: cos_sim_spearman
1958
+ value: 79.19993315048852
1959
+ - type: euclidean_pearson
1960
+ value: 72.43261099671753
1961
+ - type: euclidean_spearman
1962
+ value: 71.51531114998619
1963
+ - type: manhattan_pearson
1964
+ value: 71.83604124130447
1965
+ - type: manhattan_spearman
1966
+ value: 71.24460392842295
1967
+ - task:
1968
+ type: STS
1969
+ dataset:
1970
+ type: mteb/sts12-sts
1971
+ name: MTEB STS12
1972
+ config: default
1973
+ split: test
1974
+ revision: a0d554a64d88156834ff5ae9920b964011b16384
1975
+ metrics:
1976
+ - type: cos_sim_pearson
1977
+ value: 84.25401068481673
1978
+ - type: cos_sim_spearman
1979
+ value: 74.5249604699309
1980
+ - type: euclidean_pearson
1981
+ value: 71.1324859629043
1982
+ - type: euclidean_spearman
1983
+ value: 58.77041705276752
1984
+ - type: manhattan_pearson
1985
+ value: 71.01471521586141
1986
+ - type: manhattan_spearman
1987
+ value: 58.69949381017865
1988
+ - task:
1989
+ type: STS
1990
+ dataset:
1991
+ type: mteb/sts13-sts
1992
+ name: MTEB STS13
1993
+ config: default
1994
+ split: test
1995
+ revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
1996
+ metrics:
1997
+ - type: cos_sim_pearson
1998
+ value: 82.85731544223766
1999
+ - type: cos_sim_spearman
2000
+ value: 83.15607264736185
2001
+ - type: euclidean_pearson
2002
+ value: 75.8803249521361
2003
+ - type: euclidean_spearman
2004
+ value: 76.4862168799065
2005
+ - type: manhattan_pearson
2006
+ value: 75.80451454386811
2007
+ - type: manhattan_spearman
2008
+ value: 76.35986831074699
2009
+ - task:
2010
+ type: STS
2011
+ dataset:
2012
+ type: mteb/sts14-sts
2013
+ name: MTEB STS14
2014
+ config: default
2015
+ split: test
2016
+ revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
2017
+ metrics:
2018
+ - type: cos_sim_pearson
2019
+ value: 82.40669043798857
2020
+ - type: cos_sim_spearman
2021
+ value: 78.08686090667834
2022
+ - type: euclidean_pearson
2023
+ value: 74.48574712193803
2024
+ - type: euclidean_spearman
2025
+ value: 70.79423012045118
2026
+ - type: manhattan_pearson
2027
+ value: 74.39099211477354
2028
+ - type: manhattan_spearman
2029
+ value: 70.73135427277684
2030
+ - task:
2031
+ type: STS
2032
+ dataset:
2033
+ type: mteb/sts15-sts
2034
+ name: MTEB STS15
2035
+ config: default
2036
+ split: test
2037
+ revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
2038
+ metrics:
2039
+ - type: cos_sim_pearson
2040
+ value: 86.03027014209859
2041
+ - type: cos_sim_spearman
2042
+ value: 86.91082847840946
2043
+ - type: euclidean_pearson
2044
+ value: 69.13187603971996
2045
+ - type: euclidean_spearman
2046
+ value: 70.0370035340552
2047
+ - type: manhattan_pearson
2048
+ value: 69.2586635812031
2049
+ - type: manhattan_spearman
2050
+ value: 70.18638387118486
2051
+ - task:
2052
+ type: STS
2053
+ dataset:
2054
+ type: mteb/sts16-sts
2055
+ name: MTEB STS16
2056
+ config: default
2057
+ split: test
2058
+ revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
2059
+ metrics:
2060
+ - type: cos_sim_pearson
2061
+ value: 82.41190748361883
2062
+ - type: cos_sim_spearman
2063
+ value: 83.64850851235231
2064
+ - type: euclidean_pearson
2065
+ value: 71.60523243575282
2066
+ - type: euclidean_spearman
2067
+ value: 72.26134033805099
2068
+ - type: manhattan_pearson
2069
+ value: 71.50771482066683
2070
+ - type: manhattan_spearman
2071
+ value: 72.13707967973161
2072
+ - task:
2073
+ type: STS
2074
+ dataset:
2075
+ type: mteb/sts17-crosslingual-sts
2076
+ name: MTEB STS17 (en-en)
2077
+ config: en-en
2078
+ split: test
2079
+ revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
2080
+ metrics:
2081
+ - type: cos_sim_pearson
2082
+ value: 90.42838477648627
2083
+ - type: cos_sim_spearman
2084
+ value: 90.15798155439076
2085
+ - type: euclidean_pearson
2086
+ value: 77.09619972244516
2087
+ - type: euclidean_spearman
2088
+ value: 75.5953488548861
2089
+ - type: manhattan_pearson
2090
+ value: 77.36892406451771
2091
+ - type: manhattan_spearman
2092
+ value: 75.76625156149356
2093
+ - task:
2094
+ type: STS
2095
+ dataset:
2096
+ type: mteb/sts22-crosslingual-sts
2097
+ name: MTEB STS22 (en)
2098
+ config: en
2099
+ split: test
2100
+ revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
2101
+ metrics:
2102
+ - type: cos_sim_pearson
2103
+ value: 65.76151154879307
2104
+ - type: cos_sim_spearman
2105
+ value: 64.8846800918359
2106
+ - type: euclidean_pearson
2107
+ value: 50.23302700257155
2108
+ - type: euclidean_spearman
2109
+ value: 58.89455187289583
2110
+ - type: manhattan_pearson
2111
+ value: 50.05498582284945
2112
+ - type: manhattan_spearman
2113
+ value: 58.75893793871576
2114
+ - task:
2115
+ type: STS
2116
+ dataset:
2117
+ type: mteb/stsbenchmark-sts
2118
+ name: MTEB STSBenchmark
2119
+ config: default
2120
+ split: test
2121
+ revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
2122
+ metrics:
2123
+ - type: cos_sim_pearson
2124
+ value: 84.72381109169437
2125
+ - type: cos_sim_spearman
2126
+ value: 84.59820928231167
2127
+ - type: euclidean_pearson
2128
+ value: 74.85450857429493
2129
+ - type: euclidean_spearman
2130
+ value: 73.83634052565915
2131
+ - type: manhattan_pearson
2132
+ value: 74.97349743979106
2133
+ - type: manhattan_spearman
2134
+ value: 73.9636470375881
2135
+ - task:
2136
+ type: Reranking
2137
+ dataset:
2138
+ type: mteb/scidocs-reranking
2139
+ name: MTEB SciDocsRR
2140
+ config: default
2141
+ split: test
2142
+ revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
2143
+ metrics:
2144
+ - type: map
2145
+ value: 80.96736259172798
2146
+ - type: mrr
2147
+ value: 94.48378781712114
2148
+ - task:
2149
+ type: Retrieval
2150
+ dataset:
2151
+ type: scifact
2152
+ name: MTEB SciFact
2153
+ config: default
2154
+ split: test
2155
+ revision: None
2156
+ metrics:
2157
+ - type: map_at_1
2158
+ value: 46.344
2159
+ - type: map_at_10
2160
+ value: 54.962
2161
+ - type: map_at_100
2162
+ value: 55.772
2163
+ - type: map_at_1000
2164
+ value: 55.81700000000001
2165
+ - type: map_at_3
2166
+ value: 51.832
2167
+ - type: map_at_5
2168
+ value: 53.718999999999994
2169
+ - type: mrr_at_1
2170
+ value: 49.0
2171
+ - type: mrr_at_10
2172
+ value: 56.721
2173
+ - type: mrr_at_100
2174
+ value: 57.287
2175
+ - type: mrr_at_1000
2176
+ value: 57.330000000000005
2177
+ - type: mrr_at_3
2178
+ value: 54.056000000000004
2179
+ - type: mrr_at_5
2180
+ value: 55.822
2181
+ - type: ndcg_at_1
2182
+ value: 49.0
2183
+ - type: ndcg_at_10
2184
+ value: 59.757000000000005
2185
+ - type: ndcg_at_100
2186
+ value: 63.149
2187
+ - type: ndcg_at_1000
2188
+ value: 64.43100000000001
2189
+ - type: ndcg_at_3
2190
+ value: 54.105000000000004
2191
+ - type: ndcg_at_5
2192
+ value: 57.196999999999996
2193
+ - type: precision_at_1
2194
+ value: 49.0
2195
+ - type: precision_at_10
2196
+ value: 8.200000000000001
2197
+ - type: precision_at_100
2198
+ value: 1.0070000000000001
2199
+ - type: precision_at_1000
2200
+ value: 0.11100000000000002
2201
+ - type: precision_at_3
2202
+ value: 20.889
2203
+ - type: precision_at_5
2204
+ value: 14.399999999999999
2205
+ - type: recall_at_1
2206
+ value: 46.344
2207
+ - type: recall_at_10
2208
+ value: 72.722
2209
+ - type: recall_at_100
2210
+ value: 88.167
2211
+ - type: recall_at_1000
2212
+ value: 98.333
2213
+ - type: recall_at_3
2214
+ value: 57.994
2215
+ - type: recall_at_5
2216
+ value: 65.506
2217
+ - task:
2218
+ type: PairClassification
2219
+ dataset:
2220
+ type: mteb/sprintduplicatequestions-pairclassification
2221
+ name: MTEB SprintDuplicateQuestions
2222
+ config: default
2223
+ split: test
2224
+ revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
2225
+ metrics:
2226
+ - type: cos_sim_accuracy
2227
+ value: 99.83366336633664
2228
+ - type: cos_sim_ap
2229
+ value: 96.09329747251944
2230
+ - type: cos_sim_f1
2231
+ value: 91.66255550074001
2232
+ - type: cos_sim_precision
2233
+ value: 90.45764362220059
2234
+ - type: cos_sim_recall
2235
+ value: 92.9
2236
+ - type: dot_accuracy
2237
+ value: 99.32871287128712
2238
+ - type: dot_ap
2239
+ value: 63.95436644147969
2240
+ - type: dot_f1
2241
+ value: 60.61814556331008
2242
+ - type: dot_precision
2243
+ value: 60.437375745526836
2244
+ - type: dot_recall
2245
+ value: 60.8
2246
+ - type: euclidean_accuracy
2247
+ value: 99.66534653465347
2248
+ - type: euclidean_ap
2249
+ value: 85.85143979761818
2250
+ - type: euclidean_f1
2251
+ value: 81.57033805888769
2252
+ - type: euclidean_precision
2253
+ value: 89.68824940047962
2254
+ - type: euclidean_recall
2255
+ value: 74.8
2256
+ - type: manhattan_accuracy
2257
+ value: 99.65742574257426
2258
+ - type: manhattan_ap
2259
+ value: 85.55693926348405
2260
+ - type: manhattan_f1
2261
+ value: 81.13804004214963
2262
+ - type: manhattan_precision
2263
+ value: 85.74610244988864
2264
+ - type: manhattan_recall
2265
+ value: 77.0
2266
+ - type: max_accuracy
2267
+ value: 99.83366336633664
2268
+ - type: max_ap
2269
+ value: 96.09329747251944
2270
+ - type: max_f1
2271
+ value: 91.66255550074001
2272
+ - task:
2273
+ type: Clustering
2274
+ dataset:
2275
+ type: mteb/stackexchange-clustering
2276
+ name: MTEB StackExchangeClustering
2277
+ config: default
2278
+ split: test
2279
+ revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
2280
+ metrics:
2281
+ - type: v_measure
2282
+ value: 45.23573510003245
2283
+ - task:
2284
+ type: Clustering
2285
+ dataset:
2286
+ type: mteb/stackexchange-clustering-p2p
2287
+ name: MTEB StackExchangeClusteringP2P
2288
+ config: default
2289
+ split: test
2290
+ revision: 815ca46b2622cec33ccafc3735d572c266efdb44
2291
+ metrics:
2292
+ - type: v_measure
2293
+ value: 33.37478638401161
2294
+ - task:
2295
+ type: Reranking
2296
+ dataset:
2297
+ type: mteb/stackoverflowdupquestions-reranking
2298
+ name: MTEB StackOverflowDupQuestions
2299
+ config: default
2300
+ split: test
2301
+ revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
2302
+ metrics:
2303
+ - type: map
2304
+ value: 50.375920467392476
2305
+ - type: mrr
2306
+ value: 51.17302223919871
2307
+ - task:
2308
+ type: Summarization
2309
+ dataset:
2310
+ type: mteb/summeval
2311
+ name: MTEB SummEval
2312
+ config: default
2313
+ split: test
2314
+ revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
2315
+ metrics:
2316
+ - type: cos_sim_pearson
2317
+ value: 29.768864092288343
2318
+ - type: cos_sim_spearman
2319
+ value: 29.854278347043266
2320
+ - type: dot_pearson
2321
+ value: 20.51281723837505
2322
+ - type: dot_spearman
2323
+ value: 21.799102540913665
2324
+ - task:
2325
+ type: Retrieval
2326
+ dataset:
2327
+ type: trec-covid
2328
+ name: MTEB TRECCOVID
2329
+ config: default
2330
+ split: test
2331
+ revision: None
2332
+ metrics:
2333
+ - type: map_at_1
2334
+ value: 0.2
2335
+ - type: map_at_10
2336
+ value: 1.202
2337
+ - type: map_at_100
2338
+ value: 6.729
2339
+ - type: map_at_1000
2340
+ value: 15.928
2341
+ - type: map_at_3
2342
+ value: 0.492
2343
+ - type: map_at_5
2344
+ value: 0.712
2345
+ - type: mrr_at_1
2346
+ value: 76.0
2347
+ - type: mrr_at_10
2348
+ value: 84.75
2349
+ - type: mrr_at_100
2350
+ value: 84.75
2351
+ - type: mrr_at_1000
2352
+ value: 84.75
2353
+ - type: mrr_at_3
2354
+ value: 83.0
2355
+ - type: mrr_at_5
2356
+ value: 84.5
2357
+ - type: ndcg_at_1
2358
+ value: 71.0
2359
+ - type: ndcg_at_10
2360
+ value: 57.253
2361
+ - type: ndcg_at_100
2362
+ value: 44.383
2363
+ - type: ndcg_at_1000
2364
+ value: 38.666
2365
+ - type: ndcg_at_3
2366
+ value: 64.324
2367
+ - type: ndcg_at_5
2368
+ value: 60.791
2369
+ - type: precision_at_1
2370
+ value: 76.0
2371
+ - type: precision_at_10
2372
+ value: 59.599999999999994
2373
+ - type: precision_at_100
2374
+ value: 45.440000000000005
2375
+ - type: precision_at_1000
2376
+ value: 17.458000000000002
2377
+ - type: precision_at_3
2378
+ value: 69.333
2379
+ - type: precision_at_5
2380
+ value: 63.2
2381
+ - type: recall_at_1
2382
+ value: 0.2
2383
+ - type: recall_at_10
2384
+ value: 1.4949999999999999
2385
+ - type: recall_at_100
2386
+ value: 10.266
2387
+ - type: recall_at_1000
2388
+ value: 35.853
2389
+ - type: recall_at_3
2390
+ value: 0.5349999999999999
2391
+ - type: recall_at_5
2392
+ value: 0.8109999999999999
2393
+ - task:
2394
+ type: Retrieval
2395
+ dataset:
2396
+ type: webis-touche2020
2397
+ name: MTEB Touche2020
2398
+ config: default
2399
+ split: test
2400
+ revision: None
2401
+ metrics:
2402
+ - type: map_at_1
2403
+ value: 2.0140000000000002
2404
+ - type: map_at_10
2405
+ value: 8.474
2406
+ - type: map_at_100
2407
+ value: 14.058000000000002
2408
+ - type: map_at_1000
2409
+ value: 15.381
2410
+ - type: map_at_3
2411
+ value: 4.508
2412
+ - type: map_at_5
2413
+ value: 5.87
2414
+ - type: mrr_at_1
2415
+ value: 22.448999999999998
2416
+ - type: mrr_at_10
2417
+ value: 37.242
2418
+ - type: mrr_at_100
2419
+ value: 38.291
2420
+ - type: mrr_at_1000
2421
+ value: 38.311
2422
+ - type: mrr_at_3
2423
+ value: 32.312999999999995
2424
+ - type: mrr_at_5
2425
+ value: 34.762
2426
+ - type: ndcg_at_1
2427
+ value: 20.408
2428
+ - type: ndcg_at_10
2429
+ value: 20.729
2430
+ - type: ndcg_at_100
2431
+ value: 33.064
2432
+ - type: ndcg_at_1000
2433
+ value: 44.324999999999996
2434
+ - type: ndcg_at_3
2435
+ value: 21.251
2436
+ - type: ndcg_at_5
2437
+ value: 20.28
2438
+ - type: precision_at_1
2439
+ value: 22.448999999999998
2440
+ - type: precision_at_10
2441
+ value: 18.98
2442
+ - type: precision_at_100
2443
+ value: 7.224
2444
+ - type: precision_at_1000
2445
+ value: 1.471
2446
+ - type: precision_at_3
2447
+ value: 22.448999999999998
2448
+ - type: precision_at_5
2449
+ value: 20.816000000000003
2450
+ - type: recall_at_1
2451
+ value: 2.0140000000000002
2452
+ - type: recall_at_10
2453
+ value: 13.96
2454
+ - type: recall_at_100
2455
+ value: 44.187
2456
+ - type: recall_at_1000
2457
+ value: 79.328
2458
+ - type: recall_at_3
2459
+ value: 5.345
2460
+ - type: recall_at_5
2461
+ value: 7.979
2462
+ - task:
2463
+ type: Classification
2464
+ dataset:
2465
+ type: mteb/toxic_conversations_50k
2466
+ name: MTEB ToxicConversationsClassification
2467
+ config: default
2468
+ split: test
2469
+ revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
2470
+ metrics:
2471
+ - type: accuracy
2472
+ value: 69.1312
2473
+ - type: ap
2474
+ value: 12.606776505497608
2475
+ - type: f1
2476
+ value: 52.4112415600534
2477
+ - task:
2478
+ type: Classification
2479
+ dataset:
2480
+ type: mteb/tweet_sentiment_extraction
2481
+ name: MTEB TweetSentimentExtractionClassification
2482
+ config: default
2483
+ split: test
2484
+ revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
2485
+ metrics:
2486
+ - type: accuracy
2487
+ value: 58.16072439162422
2488
+ - type: f1
2489
+ value: 58.29152785435414
2490
+ - task:
2491
+ type: Clustering
2492
+ dataset:
2493
+ type: mteb/twentynewsgroups-clustering
2494
+ name: MTEB TwentyNewsgroupsClustering
2495
+ config: default
2496
+ split: test
2497
+ revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
2498
+ metrics:
2499
+ - type: v_measure
2500
+ value: 40.421119289825924
2501
+ - task:
2502
+ type: PairClassification
2503
+ dataset:
2504
+ type: mteb/twittersemeval2015-pairclassification
2505
+ name: MTEB TwitterSemEval2015
2506
+ config: default
2507
+ split: test
2508
+ revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
2509
+ metrics:
2510
+ - type: cos_sim_accuracy
2511
+ value: 85.48012159504083
2512
+ - type: cos_sim_ap
2513
+ value: 72.31974877212102
2514
+ - type: cos_sim_f1
2515
+ value: 67.96846573681019
2516
+ - type: cos_sim_precision
2517
+ value: 62.89562289562289
2518
+ - type: cos_sim_recall
2519
+ value: 73.93139841688654
2520
+ - type: dot_accuracy
2521
+ value: 78.52416999463551
2522
+ - type: dot_ap
2523
+ value: 43.65271285411479
2524
+ - type: dot_f1
2525
+ value: 46.94641449960599
2526
+ - type: dot_precision
2527
+ value: 37.456774599182644
2528
+ - type: dot_recall
2529
+ value: 62.875989445910285
2530
+ - type: euclidean_accuracy
2531
+ value: 83.90057817249806
2532
+ - type: euclidean_ap
2533
+ value: 65.96278727778665
2534
+ - type: euclidean_f1
2535
+ value: 63.35733232284957
2536
+ - type: euclidean_precision
2537
+ value: 60.770535497940394
2538
+ - type: euclidean_recall
2539
+ value: 66.17414248021109
2540
+ - type: manhattan_accuracy
2541
+ value: 83.96614412588663
2542
+ - type: manhattan_ap
2543
+ value: 66.03670273156699
2544
+ - type: manhattan_f1
2545
+ value: 63.49128406579917
2546
+ - type: manhattan_precision
2547
+ value: 59.366391184573
2548
+ - type: manhattan_recall
2549
+ value: 68.23218997361478
2550
+ - type: max_accuracy
2551
+ value: 85.48012159504083
2552
+ - type: max_ap
2553
+ value: 72.31974877212102
2554
+ - type: max_f1
2555
+ value: 67.96846573681019
2556
+ - task:
2557
+ type: PairClassification
2558
+ dataset:
2559
+ type: mteb/twitterurlcorpus-pairclassification
2560
+ name: MTEB TwitterURLCorpus
2561
+ config: default
2562
+ split: test
2563
+ revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
2564
+ metrics:
2565
+ - type: cos_sim_accuracy
2566
+ value: 88.97038848139093
2567
+ - type: cos_sim_ap
2568
+ value: 85.982764495556
2569
+ - type: cos_sim_f1
2570
+ value: 78.73283281450284
2571
+ - type: cos_sim_precision
2572
+ value: 75.07857791436754
2573
+ - type: cos_sim_recall
2574
+ value: 82.7610101632276
2575
+ - type: dot_accuracy
2576
+ value: 83.21108394458028
2577
+ - type: dot_ap
2578
+ value: 70.97956937273386
2579
+ - type: dot_f1
2580
+ value: 66.53083038279111
2581
+ - type: dot_precision
2582
+ value: 58.7551622418879
2583
+ - type: dot_recall
2584
+ value: 76.67847243609486
2585
+ - type: euclidean_accuracy
2586
+ value: 84.31520937633407
2587
+ - type: euclidean_ap
2588
+ value: 74.67323411319909
2589
+ - type: euclidean_f1
2590
+ value: 67.21935410935676
2591
+ - type: euclidean_precision
2592
+ value: 65.82773636430733
2593
+ - type: euclidean_recall
2594
+ value: 68.67108099784416
2595
+ - type: manhattan_accuracy
2596
+ value: 84.35013777312066
2597
+ - type: manhattan_ap
2598
+ value: 74.66508905354597
2599
+ - type: manhattan_f1
2600
+ value: 67.28264162375038
2601
+ - type: manhattan_precision
2602
+ value: 66.19970193740686
2603
+ - type: manhattan_recall
2604
+ value: 68.40160147828766
2605
+ - type: max_accuracy
2606
+ value: 88.97038848139093
2607
+ - type: max_ap
2608
+ value: 85.982764495556
2609
+ - type: max_f1
2610
+ value: 78.73283281450284
2611
+ ---
2612
+ # # Fast-Inference with Ctranslate2
2613
+ Speedup inference while reducing memory by 2x-4x using int8 inference in C++ on CPU or GPU.
2614
+
2615
+ quantized version of [jinaai/jina-embedding-l-en-v1](https://huggingface.co/jinaai/jina-embedding-l-en-v1)
2616
+ ```bash
2617
+ pip install hf-hub-ctranslate2>=2.12.0 ctranslate2>=3.17.1
2618
+ ```
2619
+
2620
+ ```python
2621
+ # from transformers import AutoTokenizer
2622
+ model_name = "michaelfeil/ct2fast-jina-embedding-l-en-v1"
2623
+ model_name_orig="jinaai/jina-embedding-l-en-v1"
2624
+
2625
+ from hf_hub_ctranslate2 import EncoderCT2fromHfHub
2626
+ model = EncoderCT2fromHfHub(
2627
+ # load in int8 on CUDA
2628
+ model_name_or_path=model_name,
2629
+ device="cuda",
2630
+ compute_type="int8_float16"
2631
+ )
2632
+ outputs = model.generate(
2633
+ text=["I like soccer", "I like tennis", "The eiffel tower is in Paris"],
2634
+ max_length=64,
2635
+ ) # perform downstream tasks on outputs
2636
+ outputs["pooler_output"]
2637
+ outputs["last_hidden_state"]
2638
+ outputs["attention_mask"]
2639
+
2640
+ # alternative, use SentenceTransformer Mix-In
2641
+ # for end-to-end Sentence embeddings generation
2642
+ # (not pulling from this CT2fast-HF repo)
2643
+
2644
+ from hf_hub_ctranslate2 import CT2SentenceTransformer
2645
+ model = CT2SentenceTransformer(
2646
+ model_name_orig, compute_type="int8_float16", device="cuda"
2647
+ )
2648
+ embeddings = model.encode(
2649
+ ["I like soccer", "I like tennis", "The eiffel tower is in Paris"],
2650
+ batch_size=32,
2651
+ convert_to_numpy=True,
2652
+ normalize_embeddings=True,
2653
+ )
2654
+ print(embeddings.shape, embeddings)
2655
+ scores = (embeddings @ embeddings.T) * 100
2656
+
2657
+ # Hint: you can also host this code via REST API and
2658
+ # via github.com/michaelfeil/infinity
2659
+
2660
+
2661
+ ```
2662
+
2663
+ Checkpoint compatible to [ctranslate2>=3.17.1](https://github.com/OpenNMT/CTranslate2)
2664
+ and [hf-hub-ctranslate2>=2.12.0](https://github.com/michaelfeil/hf-hub-ctranslate2)
2665
+ - `compute_type=int8_float16` for `device="cuda"`
2666
+ - `compute_type=int8` for `device="cpu"`
2667
+
2668
+ Converted on 2023-10-13 using
2669
+ ```
2670
+ LLama-2 -> removed <pad> token.
2671
+ ```
2672
+
2673
+ # Licence and other remarks:
2674
+ This is just a quantized version. Licence conditions are intended to be idential to original huggingface repo.
2675
+
2676
+ # Original description
2677
+
2678
+
2679
+ <br><br>
2680
+
2681
+ <p align="center">
2682
+ <img src="https://github.com/jina-ai/finetuner/blob/main/docs/_static/finetuner-logo-ani.svg?raw=true" alt="Finetuner logo: Finetuner helps you to create experiments in order to improve embeddings on search tasks. It accompanies you to deliver the last mile of performance-tuning for neural search applications." width="150px">
2683
+ </p>
2684
+
2685
+
2686
+ <p align="center">
2687
+ <b>The text embedding set trained by <a href="https://jina.ai/"><b>Jina AI</b></a>, <a href="https://github.com/jina-ai/finetuner"><b>Finetuner</b></a> team.</b>
2688
+ </p>
2689
+
2690
+
2691
+ ## Intented Usage & Model Info
2692
+
2693
+ `jina-embedding-l-en-v1` is a language model that has been trained using Jina AI's Linnaeus-Clean dataset.
2694
+ This dataset consists of 380 million pairs of sentences, which include both query-document pairs.
2695
+ These pairs were obtained from various domains and were carefully selected through a thorough cleaning process.
2696
+ The Linnaeus-Full dataset, from which the Linnaeus-Clean dataset is derived, originally contained 1.6 billion sentence pairs.
2697
+
2698
+ The model has a range of use cases, including information retrieval, semantic textual similarity, text reranking, and more.
2699
+
2700
+ With a size of 330 million parameters,
2701
+ the model enables single-gpu inference while delivering better performance than our small and base model.
2702
+ Additionally, we provide the following options:
2703
+
2704
+ - [`jina-embedding-t-en-v1`](https://huggingface.co/jinaai/jina-embedding-t-en-v1): 14 million parameters.
2705
+ - [`jina-embedding-s-en-v1`](https://huggingface.co/jinaai/jina-embedding-s-en-v1): 35 million parameters
2706
+ - [`jina-embedding-b-en-v1`](https://huggingface.co/jinaai/jina-embedding-b-en-v1): 110 million parameters.
2707
+ - [`jina-embedding-l-en-v1`](https://huggingface.co/jinaai/jina-embedding-l-en-v1): 330 million parameters **(you are here)**.
2708
+ - `jina-embedding-1b-en-v1`: 1.2 billion parameters, 10 times bert-base (soon).
2709
+ - `jina-embedding-6b-en-v1`: 6 billion parameters, 30 times bert-base (soon).
2710
+
2711
+ ## Data & Parameters
2712
+
2713
+ Please checkout our [technical blog](https://arxiv.org/abs/2307.11224).
2714
+
2715
+ ## Metrics
2716
+
2717
+ We compared the model against `all-minilm-l6-v2`/`all-mpnet-base-v2` from sbert and `text-embeddings-ada-002` from OpenAI:
2718
+
2719
+ |Name|param |dimension|
2720
+ |------------------------------|-----|------|
2721
+ |all-minilm-l6-v2|23m |384|
2722
+ |all-mpnet-base-v2 |110m |768|
2723
+ |ada-embedding-002|Unknown/OpenAI API |1536|
2724
+ |jina-embedding-t-en-v1|14m |312|
2725
+ |jina-embedding-s-en-v1|35m |512|
2726
+ |jina-embedding-b-en-v1|110m |768|
2727
+ |jina-embedding-l-en-v1|330m |1024|
2728
+
2729
+
2730
+ |Name|STS12|STS13|STS14|STS15|STS16|STS17|TRECOVID|Quora|SciFact|
2731
+ |------------------------------|-----|-----|-----|-----|-----|-----|--------|-----|-----|
2732
+ |all-minilm-l6-v2|0.724|0.806|0.756|0.854|0.79 |0.876|0.473 |0.876|0.645 |
2733
+ |all-mpnet-base-v2|0.726|**0.835**|0.78 |0.857|0.8 |**0.906**|0.513 |0.875|0.656 |
2734
+ |ada-embedding-002|0.698|0.833|0.761|0.861|**0.86** |0.903|**0.685** |0.876|**0.726** |
2735
+ |jina-embedding-t-en-v1|0.717|0.773|0.731|0.829|0.777|0.860|0.482 |0.840|0.522 |
2736
+ |jina-embedding-s-en-v1|0.743|0.786|0.738|0.837|0.80|0.875|0.523 |0.857|0.524 |
2737
+ |jina-embedding-b-en-v1|**0.751**|0.809|0.761|0.856|0.812|0.890|0.606 |0.876|0.594 |
2738
+ |jina-embedding-l-en-v1|0.745|0.832|**0.781**|**0.869**|0.837|0.902|0.573 |**0.881**|0.598 |
2739
+
2740
+ ## Usage
2741
+
2742
+ Use with Jina AI Finetuner
2743
+
2744
+ ```python
2745
+ !pip install finetuner
2746
+ import finetuner
2747
+
2748
+ model = finetuner.build_model('jinaai/jina-embedding-l-en-v1')
2749
+ embeddings = finetuner.encode(
2750
+ model=model,
2751
+ data=['how is the weather today', 'What is the current weather like today?']
2752
+ )
2753
+ print(finetuner.cos_sim(embeddings[0], embeddings[1]))
2754
+ ```
2755
+
2756
+ Use with sentence-transformers:
2757
+
2758
+ ```python
2759
+ from sentence_transformers import SentenceTransformer
2760
+ from sentence_transformers.util import cos_sim
2761
+
2762
+ sentences = ['how is the weather today', 'What is the current weather like today?']
2763
+
2764
+ model = SentenceTransformer('jinaai/jina-embedding-b-en-v1')
2765
+ embeddings = model.encode(sentences)
2766
+ print(cos_sim(embeddings[0], embeddings[1]))
2767
+ ```
2768
+
2769
+ ## Fine-tuning
2770
+
2771
+ Please consider [Finetuner](https://github.com/jina-ai/finetuner).
2772
+
2773
+ ## Plans
2774
+
2775
+ 1. The development of `jina-embedding-s-en-v2` is currently underway with two main objectives: improving performance and increasing the maximum sequence length.
2776
+ 2. We are currently working on a bilingual embedding model that combines English and X language. The upcoming model will be called `jina-embedding-s/b/l-de-v1`.
2777
+
2778
+ ## Contact
2779
+
2780
+ Join our [Discord community](https://discord.jina.ai) and chat with other community members about ideas.
2781
+
2782
+ ## Citation
2783
+
2784
+ If you find Jina Embeddings useful in your research, please cite the following paper:
2785
+
2786
+ ``` latex
2787
+ @misc{günther2023jina,
2788
+ title={Jina Embeddings: A Novel Set of High-Performance Sentence Embedding Models},
2789
+ author={Michael Günther and Louis Milliken and Jonathan Geuter and Georgios Mastrapas and Bo Wang and Han Xiao},
2790
+ year={2023},
2791
+ eprint={2307.11224},
2792
+ archivePrefix={arXiv},
2793
+ primaryClass={cs.CL}
2794
+ }
2795
+ ```
config.json ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "tmp/",
3
+ "architectures": [
4
+ "T5EncoderModel"
5
+ ],
6
+ "auto_map": {
7
+ "AutoModel": "modeling_t5.T5EncoderModel"
8
+ },
9
+ "d_ff": 4096,
10
+ "d_kv": 64,
11
+ "d_model": 1024,
12
+ "decoder_start_token_id": 0,
13
+ "dense_act_fn": "relu",
14
+ "dropout_rate": 0.1,
15
+ "eos_token_id": 1,
16
+ "feed_forward_proj": "relu",
17
+ "initializer_factor": 1.0,
18
+ "is_encoder_decoder": true,
19
+ "is_gated_act": false,
20
+ "layer_norm_epsilon": null,
21
+ "model_type": "t5",
22
+ "n_positions": 512,
23
+ "num_decoder_layers": 24,
24
+ "num_heads": 16,
25
+ "num_layers": 24,
26
+ "output_past": true,
27
+ "pad_token_id": 0,
28
+ "relative_attention_max_distance": 128,
29
+ "relative_attention_num_buckets": 32,
30
+ "task_specific_params": {
31
+ "summarization": {
32
+ "early_stopping": true,
33
+ "length_penalty": 2.0,
34
+ "max_length": 200,
35
+ "min_length": 30,
36
+ "no_repeat_ngram_size": 3,
37
+ "num_beams": 4,
38
+ "prefix": "summarize: "
39
+ },
40
+ "translation_en_to_de": {
41
+ "early_stopping": true,
42
+ "max_length": 300,
43
+ "num_beams": 4,
44
+ "prefix": "translate English to German: "
45
+ },
46
+ "translation_en_to_fr": {
47
+ "early_stopping": true,
48
+ "max_length": 300,
49
+ "num_beams": 4,
50
+ "prefix": "translate English to French: "
51
+ },
52
+ "translation_en_to_ro": {
53
+ "early_stopping": true,
54
+ "max_length": 300,
55
+ "num_beams": 4,
56
+ "prefix": "translate English to Romanian: "
57
+ }
58
+ },
59
+ "transformers_version": "4.30.2",
60
+ "use_cache": true,
61
+ "vocab_size": 32128,
62
+ "add_source_bos": false,
63
+ "add_source_eos": false,
64
+ "bos_token": "<pad>",
65
+ "decoder_start_token": "<pad>",
66
+ "eos_token": "</s>",
67
+ "unk_token": "<unk>"
68
+ }
model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:568a272c55fd03c689797e01439211a405de7f6fef11adeecd56cbfb476485e8
3
+ size 1878047772
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
shared_vocabulary.json ADDED
The diff for this file is too large to render. See raw diff
 
special_tokens_map.json ADDED
@@ -0,0 +1,107 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<extra_id_0>",
4
+ "<extra_id_1>",
5
+ "<extra_id_2>",
6
+ "<extra_id_3>",
7
+ "<extra_id_4>",
8
+ "<extra_id_5>",
9
+ "<extra_id_6>",
10
+ "<extra_id_7>",
11
+ "<extra_id_8>",
12
+ "<extra_id_9>",
13
+ "<extra_id_10>",
14
+ "<extra_id_11>",
15
+ "<extra_id_12>",
16
+ "<extra_id_13>",
17
+ "<extra_id_14>",
18
+ "<extra_id_15>",
19
+ "<extra_id_16>",
20
+ "<extra_id_17>",
21
+ "<extra_id_18>",
22
+ "<extra_id_19>",
23
+ "<extra_id_20>",
24
+ "<extra_id_21>",
25
+ "<extra_id_22>",
26
+ "<extra_id_23>",
27
+ "<extra_id_24>",
28
+ "<extra_id_25>",
29
+ "<extra_id_26>",
30
+ "<extra_id_27>",
31
+ "<extra_id_28>",
32
+ "<extra_id_29>",
33
+ "<extra_id_30>",
34
+ "<extra_id_31>",
35
+ "<extra_id_32>",
36
+ "<extra_id_33>",
37
+ "<extra_id_34>",
38
+ "<extra_id_35>",
39
+ "<extra_id_36>",
40
+ "<extra_id_37>",
41
+ "<extra_id_38>",
42
+ "<extra_id_39>",
43
+ "<extra_id_40>",
44
+ "<extra_id_41>",
45
+ "<extra_id_42>",
46
+ "<extra_id_43>",
47
+ "<extra_id_44>",
48
+ "<extra_id_45>",
49
+ "<extra_id_46>",
50
+ "<extra_id_47>",
51
+ "<extra_id_48>",
52
+ "<extra_id_49>",
53
+ "<extra_id_50>",
54
+ "<extra_id_51>",
55
+ "<extra_id_52>",
56
+ "<extra_id_53>",
57
+ "<extra_id_54>",
58
+ "<extra_id_55>",
59
+ "<extra_id_56>",
60
+ "<extra_id_57>",
61
+ "<extra_id_58>",
62
+ "<extra_id_59>",
63
+ "<extra_id_60>",
64
+ "<extra_id_61>",
65
+ "<extra_id_62>",
66
+ "<extra_id_63>",
67
+ "<extra_id_64>",
68
+ "<extra_id_65>",
69
+ "<extra_id_66>",
70
+ "<extra_id_67>",
71
+ "<extra_id_68>",
72
+ "<extra_id_69>",
73
+ "<extra_id_70>",
74
+ "<extra_id_71>",
75
+ "<extra_id_72>",
76
+ "<extra_id_73>",
77
+ "<extra_id_74>",
78
+ "<extra_id_75>",
79
+ "<extra_id_76>",
80
+ "<extra_id_77>",
81
+ "<extra_id_78>",
82
+ "<extra_id_79>",
83
+ "<extra_id_80>",
84
+ "<extra_id_81>",
85
+ "<extra_id_82>",
86
+ "<extra_id_83>",
87
+ "<extra_id_84>",
88
+ "<extra_id_85>",
89
+ "<extra_id_86>",
90
+ "<extra_id_87>",
91
+ "<extra_id_88>",
92
+ "<extra_id_89>",
93
+ "<extra_id_90>",
94
+ "<extra_id_91>",
95
+ "<extra_id_92>",
96
+ "<extra_id_93>",
97
+ "<extra_id_94>",
98
+ "<extra_id_95>",
99
+ "<extra_id_96>",
100
+ "<extra_id_97>",
101
+ "<extra_id_98>",
102
+ "<extra_id_99>"
103
+ ],
104
+ "eos_token": "</s>",
105
+ "pad_token": "<pad>",
106
+ "unk_token": "<unk>"
107
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,111 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<extra_id_0>",
4
+ "<extra_id_1>",
5
+ "<extra_id_2>",
6
+ "<extra_id_3>",
7
+ "<extra_id_4>",
8
+ "<extra_id_5>",
9
+ "<extra_id_6>",
10
+ "<extra_id_7>",
11
+ "<extra_id_8>",
12
+ "<extra_id_9>",
13
+ "<extra_id_10>",
14
+ "<extra_id_11>",
15
+ "<extra_id_12>",
16
+ "<extra_id_13>",
17
+ "<extra_id_14>",
18
+ "<extra_id_15>",
19
+ "<extra_id_16>",
20
+ "<extra_id_17>",
21
+ "<extra_id_18>",
22
+ "<extra_id_19>",
23
+ "<extra_id_20>",
24
+ "<extra_id_21>",
25
+ "<extra_id_22>",
26
+ "<extra_id_23>",
27
+ "<extra_id_24>",
28
+ "<extra_id_25>",
29
+ "<extra_id_26>",
30
+ "<extra_id_27>",
31
+ "<extra_id_28>",
32
+ "<extra_id_29>",
33
+ "<extra_id_30>",
34
+ "<extra_id_31>",
35
+ "<extra_id_32>",
36
+ "<extra_id_33>",
37
+ "<extra_id_34>",
38
+ "<extra_id_35>",
39
+ "<extra_id_36>",
40
+ "<extra_id_37>",
41
+ "<extra_id_38>",
42
+ "<extra_id_39>",
43
+ "<extra_id_40>",
44
+ "<extra_id_41>",
45
+ "<extra_id_42>",
46
+ "<extra_id_43>",
47
+ "<extra_id_44>",
48
+ "<extra_id_45>",
49
+ "<extra_id_46>",
50
+ "<extra_id_47>",
51
+ "<extra_id_48>",
52
+ "<extra_id_49>",
53
+ "<extra_id_50>",
54
+ "<extra_id_51>",
55
+ "<extra_id_52>",
56
+ "<extra_id_53>",
57
+ "<extra_id_54>",
58
+ "<extra_id_55>",
59
+ "<extra_id_56>",
60
+ "<extra_id_57>",
61
+ "<extra_id_58>",
62
+ "<extra_id_59>",
63
+ "<extra_id_60>",
64
+ "<extra_id_61>",
65
+ "<extra_id_62>",
66
+ "<extra_id_63>",
67
+ "<extra_id_64>",
68
+ "<extra_id_65>",
69
+ "<extra_id_66>",
70
+ "<extra_id_67>",
71
+ "<extra_id_68>",
72
+ "<extra_id_69>",
73
+ "<extra_id_70>",
74
+ "<extra_id_71>",
75
+ "<extra_id_72>",
76
+ "<extra_id_73>",
77
+ "<extra_id_74>",
78
+ "<extra_id_75>",
79
+ "<extra_id_76>",
80
+ "<extra_id_77>",
81
+ "<extra_id_78>",
82
+ "<extra_id_79>",
83
+ "<extra_id_80>",
84
+ "<extra_id_81>",
85
+ "<extra_id_82>",
86
+ "<extra_id_83>",
87
+ "<extra_id_84>",
88
+ "<extra_id_85>",
89
+ "<extra_id_86>",
90
+ "<extra_id_87>",
91
+ "<extra_id_88>",
92
+ "<extra_id_89>",
93
+ "<extra_id_90>",
94
+ "<extra_id_91>",
95
+ "<extra_id_92>",
96
+ "<extra_id_93>",
97
+ "<extra_id_94>",
98
+ "<extra_id_95>",
99
+ "<extra_id_96>",
100
+ "<extra_id_97>",
101
+ "<extra_id_98>",
102
+ "<extra_id_99>"
103
+ ],
104
+ "clean_up_tokenization_spaces": true,
105
+ "eos_token": "</s>",
106
+ "extra_ids": 100,
107
+ "model_max_length": 512,
108
+ "pad_token": "<pad>",
109
+ "tokenizer_class": "T5Tokenizer",
110
+ "unk_token": "<unk>"
111
+ }