Upload checkpoints-first-stage/config.yml with huggingface_hub
Browse files
checkpoints-first-stage/config.yml
ADDED
|
@@ -0,0 +1,113 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
log_dir: "Models/Multispeakers"
|
| 2 |
+
first_stage_path: "first_stage.pth"
|
| 3 |
+
save_freq: 1
|
| 4 |
+
log_interval: 10
|
| 5 |
+
device: "cuda"
|
| 6 |
+
epochs_1st: 50 # number of epochs for first stage training (pre-training)
|
| 7 |
+
epochs_2nd: 30 # number of peochs for second stage training (joint training)
|
| 8 |
+
batch_size: 10
|
| 9 |
+
max_len: 300 # maximum number of frames
|
| 10 |
+
pretrained_model: "/ephemeral/epoch_1st_00001.pth"
|
| 11 |
+
second_stage_load_pretrained: true # set to true if the pre-trained model is for 2nd stage
|
| 12 |
+
load_only_params: false # set to true if do not want to load epoch numbers and optimizer parameters
|
| 13 |
+
|
| 14 |
+
F0_path: "Utils/JDC/bst.t7"
|
| 15 |
+
ASR_config: "Utils/ASR/config.yml"
|
| 16 |
+
ASR_path: "Utils/ASR/epoch_00020.pth"
|
| 17 |
+
PLBERT_dir: 'Utils/PLBERT/'
|
| 18 |
+
|
| 19 |
+
data_params:
|
| 20 |
+
train_data: "/ephemeral/train_list.txt"
|
| 21 |
+
val_data: "/ephemeral/val_list.txt"
|
| 22 |
+
root_path: ""
|
| 23 |
+
OOD_data: "Data/OOD_texts.txt"
|
| 24 |
+
min_length: 50 # sample until texts with this size are obtained for OOD texts
|
| 25 |
+
|
| 26 |
+
preprocess_params:
|
| 27 |
+
sr: 24000
|
| 28 |
+
spect_params:
|
| 29 |
+
n_fft: 2048
|
| 30 |
+
win_length: 1200
|
| 31 |
+
hop_length: 300
|
| 32 |
+
|
| 33 |
+
model_params:
|
| 34 |
+
multispeaker: true
|
| 35 |
+
|
| 36 |
+
dim_in: 64
|
| 37 |
+
hidden_dim: 512
|
| 38 |
+
max_conv_dim: 512
|
| 39 |
+
n_layer: 3
|
| 40 |
+
n_mels: 80
|
| 41 |
+
|
| 42 |
+
n_token: 178 # number of phoneme tokens
|
| 43 |
+
max_dur: 50 # maximum duration of a single phoneme
|
| 44 |
+
style_dim: 128 # style vector size
|
| 45 |
+
|
| 46 |
+
dropout: 0.2
|
| 47 |
+
|
| 48 |
+
# config for decoder
|
| 49 |
+
decoder:
|
| 50 |
+
type: 'hifigan' # either hifigan or istftnet
|
| 51 |
+
resblock_kernel_sizes: [3,7,11]
|
| 52 |
+
upsample_rates : [10,5,3,2]
|
| 53 |
+
upsample_initial_channel: 512
|
| 54 |
+
resblock_dilation_sizes: [[1,3,5], [1,3,5], [1,3,5]]
|
| 55 |
+
upsample_kernel_sizes: [20,10,6,4]
|
| 56 |
+
|
| 57 |
+
# speech language model config
|
| 58 |
+
slm:
|
| 59 |
+
model: 'microsoft/wavlm-base-plus'
|
| 60 |
+
sr: 16000 # sampling rate of SLM
|
| 61 |
+
hidden: 768 # hidden size of SLM
|
| 62 |
+
nlayers: 13 # number of layers of SLM
|
| 63 |
+
initial_channel: 64 # initial channels of SLM discriminator head
|
| 64 |
+
|
| 65 |
+
# style diffusion model config
|
| 66 |
+
diffusion:
|
| 67 |
+
embedding_mask_proba: 0.1
|
| 68 |
+
# transformer config
|
| 69 |
+
transformer:
|
| 70 |
+
num_layers: 3
|
| 71 |
+
num_heads: 8
|
| 72 |
+
head_features: 64
|
| 73 |
+
multiplier: 2
|
| 74 |
+
|
| 75 |
+
# diffusion distribution config
|
| 76 |
+
dist:
|
| 77 |
+
sigma_data: 0.2 # placeholder for estimate_sigma_data set to false
|
| 78 |
+
estimate_sigma_data: true # estimate sigma_data from the current batch if set to true
|
| 79 |
+
mean: -3.0
|
| 80 |
+
std: 1.0
|
| 81 |
+
|
| 82 |
+
loss_params:
|
| 83 |
+
lambda_mel: 5. # mel reconstruction loss
|
| 84 |
+
lambda_gen: 1. # generator loss
|
| 85 |
+
lambda_slm: 1. # slm feature matching loss
|
| 86 |
+
|
| 87 |
+
lambda_mono: 1. # monotonic alignment loss (1st stage, TMA)
|
| 88 |
+
lambda_s2s: 1. # sequence-to-sequence loss (1st stage, TMA)
|
| 89 |
+
TMA_epoch: 2 # TMA starting epoch (1st stage)
|
| 90 |
+
|
| 91 |
+
lambda_F0: 1. # F0 reconstruction loss (2nd stage)
|
| 92 |
+
lambda_norm: 1. # norm reconstruction loss (2nd stage)
|
| 93 |
+
lambda_dur: 1. # duration loss (2nd stage)
|
| 94 |
+
lambda_ce: 20. # duration predictor probability output CE loss (2nd stage)
|
| 95 |
+
lambda_sty: 1. # style reconstruction loss (2nd stage)
|
| 96 |
+
lambda_diff: 1. # score matching loss (2nd stage)
|
| 97 |
+
|
| 98 |
+
diff_epoch: 10 # style diffusion starting epoch (2nd stage)
|
| 99 |
+
joint_epoch: 15 # joint training starting epoch (2nd stage)
|
| 100 |
+
|
| 101 |
+
optimizer_params:
|
| 102 |
+
lr: 0.0001 # general learning rate
|
| 103 |
+
bert_lr: 0.00001 # learning rate for PLBERT
|
| 104 |
+
ft_lr: 0.00001 # learning rate for acoustic modules
|
| 105 |
+
|
| 106 |
+
slmadv_params:
|
| 107 |
+
min_len: 400 # minimum length of samples
|
| 108 |
+
max_len: 500 # maximum length of samples
|
| 109 |
+
batch_percentage: 0.5 # to prevent out of memory, only use half of the original batch size
|
| 110 |
+
iter: 20 # update the discriminator every this iterations of generator update
|
| 111 |
+
thresh: 5 # gradient norm above which the gradient is scaled
|
| 112 |
+
scale: 0.01 # gradient scaling factor for predictors from SLM discriminators
|
| 113 |
+
sig: 1.5 # sigma for differentiable duration modeling
|