Hugging Face
Models
Datasets
Spaces
Community
Docs
Enterprise
Pricing
Log In
Sign Up
89
12
1
Margaret Mitchell
meg
Follow
linoyts's profile picture
Deytoons's profile picture
sudanenator's profile picture
196 followers
·
34 following
http://www.m-mitchell.com
mmitchell_ai
mmitchellai
AI & ML interests
natural language processing, computer vision, ethical artificial intelligence, assistive and augmentative technology
Recent Activity
replied
to
their
post
about 5 hours ago
🤖 ICYMI: Yesterday, Hugging Face and OpenAI partnered to bring open source GPT to the public. This is a Big Deal in "AI world". 0. Common ground setting: OpenAI is the ChatGPT people. An “open source” model is one whose weights are available — that means the model can be “yours”. 1. You don’t have to interact with the company directly, nor give them your interactions, to use the system. The company can't "surveil" you. 2. You can evaluate the unique contributions of their SOTA model much more rigorously than you can when there are collections of models+code behind a closed API. You can find out specifically what the model can and can't do. 3. And you can directly customize it for whatever you'd like. Fine-tuning, wherein you give the model data that's tailored to your use cases and train it some more on that data, is trivial* when you have the model weights. *Provided you have the compute. 4. You can directly benchmark whatever you'd like. Biases? Energy usage? Strengths/weaknesses? Go for it. You wants it you gots it--this transparency helps people understand SOTA *in general*, not just for this model, but points to, e.g., what's going on with closed Google models as well. 5. One of the most powerful things about "openness" that I've learned is that it cultivates ecosystems of collaborators building on top of one another's brilliance to make systems that are significantly better than they would be if created in isolation. But, caveat wrt my own philosophy... 6. I do not take it as a given that advancing LLMs is good, and have a lot more to say wrt where I think innovation should focus more. For example, a focus on *data* -- curation, measurement, consent, credit, compensation, safety -- would deeply improve technology for everyone. 7. The transparency this release provides is massive for people who want to *learn* about LLMs. For the next generation of technologists to advance over the current, they MUST be able to learn about what's happening now. (cont...)
posted
an
update
about 5 hours ago
🤖 ICYMI: Yesterday, Hugging Face and OpenAI partnered to bring open source GPT to the public. This is a Big Deal in "AI world". 0. Common ground setting: OpenAI is the ChatGPT people. An “open source” model is one whose weights are available — that means the model can be “yours”. 1. You don’t have to interact with the company directly, nor give them your interactions, to use the system. The company can't "surveil" you. 2. You can evaluate the unique contributions of their SOTA model much more rigorously than you can when there are collections of models+code behind a closed API. You can find out specifically what the model can and can't do. 3. And you can directly customize it for whatever you'd like. Fine-tuning, wherein you give the model data that's tailored to your use cases and train it some more on that data, is trivial* when you have the model weights. *Provided you have the compute. 4. You can directly benchmark whatever you'd like. Biases? Energy usage? Strengths/weaknesses? Go for it. You wants it you gots it--this transparency helps people understand SOTA *in general*, not just for this model, but points to, e.g., what's going on with closed Google models as well. 5. One of the most powerful things about "openness" that I've learned is that it cultivates ecosystems of collaborators building on top of one another's brilliance to make systems that are significantly better than they would be if created in isolation. But, caveat wrt my own philosophy... 6. I do not take it as a given that advancing LLMs is good, and have a lot more to say wrt where I think innovation should focus more. For example, a focus on *data* -- curation, measurement, consent, credit, compensation, safety -- would deeply improve technology for everyone. 7. The transparency this release provides is massive for people who want to *learn* about LLMs. For the next generation of technologists to advance over the current, they MUST be able to learn about what's happening now. (cont...)
posted
an
update
6 days ago
🤖 👾 Thanks so much to BBC News and the stellar Suranjana Tewari for having me on to talk about US <—> China relationship in AI, and what it means for AI ethics.
View all activity
Organizations
meg
's Spaces
5
Sort: Recently updated
pinned
Runtime error
1
Backend
🥇
pinned
Runtime error
11
Toxicity Benchmarking
🥇
Explore toxicity scores of models
Running
13
Watermark Demo
🏃
Demo of watermarking with gradio
Runtime error
Docker App Test
💻
No application file
FineWebBiasAnalyses
🚀