Commit
·
bf864fd
1
Parent(s):
10915d6
update readme and git attr
Browse files- .gitattributes +2 -0
- README.md +64 -8
.gitattributes
CHANGED
|
@@ -25,3 +25,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
| 27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
| 25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
| 27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 28 |
+
*.torchparams filter=lfs diff=lfs merge=lfs -text
|
| 29 |
+
*.tar filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
|
@@ -1,12 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
# EfficientTDNN
|
| 2 |
|
| 3 |
-
Model Version
|
| 4 |
-
|
| 5 |
-
- Dynamic Kernel
|
| 6 |
-
- Dynamic Depth
|
| 7 |
-
- Dynamic Width 1
|
| 8 |
-
- Dynamic Width 2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
|
| 10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
|
| 12 |
-
|
|
|
|
| 1 |
+
---
|
| 2 |
+
language:
|
| 3 |
+
- en
|
| 4 |
+
license: mit
|
| 5 |
+
tags:
|
| 6 |
+
- embeddings
|
| 7 |
+
- Speaker
|
| 8 |
+
- Verification
|
| 9 |
+
- Identification
|
| 10 |
+
- NAS
|
| 11 |
+
- TDNN
|
| 12 |
+
- pytorch
|
| 13 |
+
datasets:
|
| 14 |
+
- voxceleb1
|
| 15 |
+
- voxceleb2
|
| 16 |
+
metrics:
|
| 17 |
+
- EER
|
| 18 |
+
- minDCF:
|
| 19 |
+
- p_target: 0.01
|
| 20 |
+
---
|
| 21 |
+
|
| 22 |
+
|
| 23 |
# EfficientTDNN
|
| 24 |
|
| 25 |
+
Model Version are listed as follows.
|
| 26 |
+
|
| 27 |
+
- **Dynamic Kernel**: The model enables various kernel sizes in {1,3,5}, `kernel/kernel.torchparams`.
|
| 28 |
+
- **Dynamic Depth**: The model enables additional various depth in {2,3,4} based on **Dynamic Kernel** version, `depth/depth.torchparams`.
|
| 29 |
+
- **Dynamic Width 1**: The model enable additional various width in [0.5, 1.0] based on **Dynamic Depth** version, `width1/width1.torchparams`.
|
| 30 |
+
- **Dynamic Width 2**: The model enable additional various width in [0.25, 0.5] based on **Dynamic Width 1** version, `width2/width2.torchparams`.
|
| 31 |
+
|
| 32 |
+
Furthermore, some subnets are given in the form of the weights of batchnorm corresponding to their trained supernets as follows.
|
| 33 |
+
|
| 34 |
+
- **Dynamic Kernel**
|
| 35 |
+
1. `kernel/kernel.max.bn.tar`
|
| 36 |
+
2. `kernel/kernel.Kmin.bn.tar`
|
| 37 |
+
- **Dynamic Depth**
|
| 38 |
+
1. `depth/depth.max.bn.tar`
|
| 39 |
+
2. `depth/depth.Kmin.bn.tar`
|
| 40 |
+
3. `depth/depth.Dmin.bn.tar`
|
| 41 |
+
4. `depth/depth.3.512.5.5.3.3.1536.bn.tar`
|
| 42 |
+
5. `depth/depth.ecapa-tdnn.3.512.512.512.512.5.3.3.3.1536.bn.tar`
|
| 43 |
+
- **Dynamic Width 1**
|
| 44 |
+
1. `width1/width1.torchparams`
|
| 45 |
+
2. `width1/width1.max.bn.tar`
|
| 46 |
+
3. `width1/width1.Kmin.bn.tar`
|
| 47 |
+
4. `width1/width1.Dmin.bn.tar`
|
| 48 |
+
5. `width1/width1.C1min.bn.tar`
|
| 49 |
+
6. `width1/width1.3.383.256.256.256.5.3.3.3.768.bn.tar`
|
| 50 |
+
- **Dynamic Width 2**
|
| 51 |
+
1. `width2/width2.max.bn.tar`
|
| 52 |
+
2. `width2/width2.Kmin.bn.tar`
|
| 53 |
+
3. `width2/width2.Dmin.bn.tar`
|
| 54 |
+
4. `width2/width2.C1min.bn.tar`
|
| 55 |
+
5. `width2/width2.C2min.bn.tar`
|
| 56 |
+
6. `width2/width2.3.384.3.1152.bn.tar`
|
| 57 |
+
7. `width2/width2.3.256.256.384.384.1.3.5.3.1152.bn.tar`
|
| 58 |
+
8. `width2/width2.2.256.256.256.3.3.3.400.bn.tar`
|
| 59 |
+
|
| 60 |
+
The tag is described as follows.
|
| 61 |
|
| 62 |
+
- max: `(4, [512, 512, 512, 512, 512], [5, 5, 5, 5, 5], 1536)`
|
| 63 |
+
- Kmin: `(4, [512, 512, 512, 512, 512], [1, 1, 1, 1, 1], 1536)`
|
| 64 |
+
- Dmin: `(2, [512, 512, 512], [1, 1, 1], 1536)`
|
| 65 |
+
- C1min: `(2, [256, 256, 256], [1, 1, 1], 768)`
|
| 66 |
+
- C2min: `(2, [128, 128, 128], [1, 1, 1], 384)`
|
| 67 |
|
| 68 |
+
More details about EfficentTDNN can be found in the paper [EfficientTDNN](https://arxiv.org/abs/2103.13581).
|