maximuspowers commited on
Commit
3cca563
·
verified ·
1 Parent(s): b01c81e

fixed model card

Browse files
Files changed (1) hide show
  1. README.md +16 -17
README.md CHANGED
@@ -1,14 +1,21 @@
1
  ---
2
  license: mit
3
- datasets:
4
- - vector-institute/newsmediabias-plus
5
  language:
6
- - en
 
 
 
 
 
 
 
7
  metrics:
8
- - f1(0.698616087436676)
9
- - precision(0.6369158625602722)
10
- - recall(0.7735527753829956)
11
- - accuracy(0.6247606873512268)
 
 
12
  library_name: transformers
13
  co2_eq_emissions:
14
  emissions: 8
@@ -16,16 +23,8 @@ co2_eq_emissions:
16
  training_type: fine-tuning
17
  geographical_location: Albany, New York
18
  hardware_used: T4
19
- base_model:
20
- - google-bert/bert-base-uncased
21
- - microsoft/resnet-34
22
- pipeline_tag: custom
23
- tags:
24
- - Social Bias
25
- - Multimodal
26
-
27
  ---
28
-
29
  # Multimodal Bias Classifier
30
 
31
  This model is a multimodal classifier that combines text and image inputs to detect potential bias in content. It uses a BERT-based text encoder and a ResNet-34 image encoder, which are fused for classification purposes. A contrastive learning approach was used during training, leveraging CLIP embeddings as guidance to align the text and image representations.
@@ -193,4 +192,4 @@ with torch.no_grad():
193
  )
194
  predicted_class = torch.sigmoid(classification_output).round().item()
195
  print("Predicted class:", "Biased" if predicted_class == 1 else "Unbiased")
196
- ```
 
1
  ---
2
  license: mit
 
 
3
  language:
4
+ - en
5
+ base_model:
6
+ - google-bert/bert-base-uncased
7
+ - microsoft/resnet-34
8
+ tags:
9
+ - Social Bias
10
+ - Fairness
11
+ - Fake News
12
  metrics:
13
+ - f1(0.698616087436676)
14
+ - precision(0.6369158625602722)
15
+ - recall(0.7735527753829956)
16
+ - accuracy(0.6247606873512268)
17
+ datasets:
18
+ - vector-institute/newsmediabias-plus
19
  library_name: transformers
20
  co2_eq_emissions:
21
  emissions: 8
 
23
  training_type: fine-tuning
24
  geographical_location: Albany, New York
25
  hardware_used: T4
 
 
 
 
 
 
 
 
26
  ---
27
+
28
  # Multimodal Bias Classifier
29
 
30
  This model is a multimodal classifier that combines text and image inputs to detect potential bias in content. It uses a BERT-based text encoder and a ResNet-34 image encoder, which are fused for classification purposes. A contrastive learning approach was used during training, leveraging CLIP embeddings as guidance to align the text and image representations.
 
192
  )
193
  predicted_class = torch.sigmoid(classification_output).round().item()
194
  print("Predicted class:", "Biased" if predicted_class == 1 else "Unbiased")
195
+ ```