lastdefiance20 commited on
Commit
74ad9fb
·
verified ·
1 Parent(s): a645c26

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +91 -3
README.md CHANGED
@@ -1,3 +1,91 @@
1
- ---
2
- license: llama3.2
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: llama3.2
3
+ base_model:
4
+ - meta-llama/Llama-3.2-11B-Vision-Instruct
5
+ language:
6
+ - en
7
+ - ko
8
+ tags:
9
+ - vlm-ko
10
+ - meta
11
+ - llama-3.2
12
+ - llama-3.2-ko
13
+ datasets:
14
+ - maum-ai/General-Evol-VQA
15
+ ---
16
+ <p align="left">
17
+ <img src="https://cdn-uploads.huggingface.co/production/uploads/646484cfb90150b2706df03b/BEOyMpnnY9VY2KXlc3V2F.png" width="20%"/>
18
+ <p>
19
+
20
+ # Llama-3.2-MAAL-11B-Vision-v0.1
21
+
22
+ We are releasing a [model](https://huggingface.co/maum-ai/Llama-3.2-MAAL-11B-Vision-v0.1), a subset of the [training dataset](https://huggingface.co/datasets/maum-ai/General-Evol-VQA), and a [leaderboard](https://huggingface.co/spaces/maum-ai/KOFFVQA-Leaderboard) to promote and accelerate the development of Korean Vision-Language Models (VLMs).
23
+
24
+ - **Developed by:** [maum.ai Brain NLP](https://maum-ai.github.io). Jaeyoon Jung, Yoonshik Kim, Yekyung Nah
25
+ - **Language(s) (NLP):** Korean, English (currently, bilingual)
26
+
27
+
28
+ ## Model Description
29
+
30
+ Version 0.1 is fine-tuned by English and Korean VQA dataset with other datasets (OCR, Math, etc)...
31
+
32
+ - We trained this model on 8 H100-80G for 2 days with image-text pair multimodal fine-tuning dataset
33
+ - [maum-ai/General-Evol-VQA](https://huggingface.co/datasets/maum-ai/General-Evol-VQA) is one of the datasets that we used for fine-tuning.
34
+
35
+ ## sample inference code (GPU)
36
+ Starting with transformers >= 4.45.0 onward, you can run inference to generate text based on an image and a starting prompt you supply.
37
+
38
+ ```
39
+ import requests
40
+ import torch
41
+ from PIL import Image
42
+ from transformers import MllamaForConditionalGeneration, AutoProcessor
43
+
44
+ model_id = "maum-ai/Llama-3.2-MAAL-11B-Vision-v0.1"
45
+
46
+ model = MllamaForConditionalGeneration.from_pretrained(
47
+ model_id,
48
+ torch_dtype=torch.bfloat16,
49
+ device_map="auto",
50
+ )
51
+ processor = AutoProcessor.from_pretrained(model_id)
52
+
53
+ url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/0052a70beed5bf71b92610a43a52df6d286cd5f3/diffusers/rabbit.jpg"
54
+ image = Image.open(requests.get(url, stream=True).raw)
55
+
56
+ messages = [
57
+ {"role": "user", "content": [
58
+ {"type": "image"},
59
+ {"type": "text", "text": "이 이미지에 대해서 시를 써줘"}
60
+ ]}
61
+ ]
62
+ input_text = processor.apply_chat_template(messages, add_generation_prompt=True)
63
+ inputs = processor(
64
+ image,
65
+ input_text,
66
+ add_special_tokens=False,
67
+ return_tensors="pt"
68
+ ).to(model.device)
69
+
70
+ output = model.generate(**inputs, max_new_tokens=200)
71
+ print(processor.decode(output[0]))
72
+ ```
73
+
74
+ ## Evaluation Results
75
+ As the main goal of version 0.1 is **leveraging Korean VQA and OCR capabilities tailored to real-world business use cases**, we select [**KOFFVQA**](https://huggingface.co/spaces/maum-ai/KOFFVQA-Leaderboard) as our evaluation method to assess the Korean instruction-following skills.
76
+
77
+ |Model|Params (B)|average(↑)|
78
+ |-|-|-|
79
+ |NCSOFT/VARCO-VISION-14B|15.2b|66.69|
80
+ |Qwen/Qwen2-VL-7B-Instruct|8.3b|63.53|
81
+ |**maum-ai/Llama-3.2-MAAL-11B-Vision-v0.1**|10.7b|61.13|
82
+ |meta-llama/Llama-3.2-11B-Vision-Instruct|10.7b|50.36|
83
+ |mistralai/Pixtral-12B-2409|12.7b|44.62|
84
+ |llava-onevision-qwen2-7b-ov|8b|43.78|
85
+ |InternVL2-8b|8.1b|32.76|
86
+ |MiniCPM-V-2_6|8.1b|32.69|
87
+
88
+ Our model has achieved a 20% performance improvement compared to the previous base model.
89
+ You can check more results in [this Leaderboard](https://huggingface.co/spaces/maum-ai/KOFFVQA-Leaderboard)
90
+
91
+ ### We will release enhanced model, v0.2 soon