matunderstars commited on
Commit
ff837b7
·
verified ·
1 Parent(s): 937a23b

Add new SentenceTransformer model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,393 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:184
8
+ - loss:MultipleNegativesRankingLoss
9
+ base_model: sentence-transformers/all-MiniLM-L12-v2
10
+ widget:
11
+ - source_sentence: Onde tirar dúvidas sobre o SIASS?
12
+ sentences:
13
+ - Envie um e-mail para [email protected]
14
+ - Envie um e-mail para [email protected].
15
+ - Envie um e-mail para [email protected] solicitando a alteração dos
16
+ dados bancários.
17
+ - source_sentence: Como acionar a manutenção de um bem em garantia?
18
+ sentences:
19
+ - Preencha o formulário em https://administrativo.ufes.br e envie com 15 dias de
20
+ antecedência.
21
+ - Acesse https://compras.ufes.br/inclusao-de-produto-no-catalogo-de-materiais.
22
+ - Entre em contato com o fornecedor.
23
+ - source_sentence: Computador não abre sistema operacional
24
+ sentences:
25
+ - Faça login no gmail.com com o usuário único @ufes.br e siga as instruções em https://senha.ufes.br/site/ativaGmail.
26
+ - Clique no link https://chat.google.com/room/AAAAHqHLj6c?cls=4.
27
+ - Se o sistema operacional não inicia, pode ser um problema no disco ou sistema.
28
+ Contate o suporte de TI para suporte e diagnóstico.
29
+ - source_sentence: Como acessar os dados acadêmicos e administrativos?
30
+ sentences:
31
+ - Siga as orientações disponíveis em https://progep.ufes.br/exames-periodicos.
32
+ - Acesse o Portal Administrativo em https://administrativo.ufes.br.
33
+ - Acesse https://senha.ufes.br/site/recuperaCredenciais.
34
+ - source_sentence: Como cadastrar ou alterar dados no Sistema Integrado de Ensino
35
+ (SIE), Protocolo, Portal Administrativo, Acadêmico e Reservas?
36
+ sentences:
37
+ - Siga os procedimentos em https://portaladministrativo.ufes.br/utilizacao-de-registro-de-precos-existente.
38
+ - 'Acesse nosso chat para falar com um atendente humano: https://chat.google.com/room/AAAAHqHLj6c?cls=7'
39
+ - Acesse https://dtin.saomateus.ufes.br/cadastros-e-habilitacao-aos-sistemas-institucionais
40
+ e preencha o formulário.
41
+ datasets:
42
+ - matunderstars/ufes-qa-data
43
+ pipeline_tag: sentence-similarity
44
+ library_name: sentence-transformers
45
+ ---
46
+
47
+ # SentenceTransformer based on sentence-transformers/all-MiniLM-L12-v2
48
+
49
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L12-v2) on the [train](https://huggingface.co/datasets/matunderstars/ufes-qa-data) and [test](https://huggingface.co/datasets/matunderstars/ufes-qa-data) datasets. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
50
+
51
+ ## Model Details
52
+
53
+ ### Model Description
54
+ - **Model Type:** Sentence Transformer
55
+ - **Base model:** [sentence-transformers/all-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L12-v2) <!-- at revision 364dd28d28dcd3359b537f3cf1f5348ba679da62 -->
56
+ - **Maximum Sequence Length:** 128 tokens
57
+ - **Output Dimensionality:** 384 dimensions
58
+ - **Similarity Function:** Cosine Similarity
59
+ - **Training Datasets:**
60
+ - [train](https://huggingface.co/datasets/matunderstars/ufes-qa-data)
61
+ - [test](https://huggingface.co/datasets/matunderstars/ufes-qa-data)
62
+ <!-- - **Language:** Unknown -->
63
+ <!-- - **License:** Unknown -->
64
+
65
+ ### Model Sources
66
+
67
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
68
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
69
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
70
+
71
+ ### Full Model Architecture
72
+
73
+ ```
74
+ SentenceTransformer(
75
+ (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
76
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
77
+ (2): Normalize()
78
+ )
79
+ ```
80
+
81
+ ## Usage
82
+
83
+ ### Direct Usage (Sentence Transformers)
84
+
85
+ First install the Sentence Transformers library:
86
+
87
+ ```bash
88
+ pip install -U sentence-transformers
89
+ ```
90
+
91
+ Then you can load this model and run inference.
92
+ ```python
93
+ from sentence_transformers import SentenceTransformer
94
+
95
+ # Download from the 🤗 Hub
96
+ model = SentenceTransformer("matunderstars/ufes-qa-embedding-finetuned")
97
+ # Run inference
98
+ sentences = [
99
+ 'Como cadastrar ou alterar dados no Sistema Integrado de Ensino (SIE), Protocolo, Portal Administrativo, Acadêmico e Reservas?',
100
+ 'Acesse https://dtin.saomateus.ufes.br/cadastros-e-habilitacao-aos-sistemas-institucionais e preencha o formulário.',
101
+ 'Acesse nosso chat para falar com um atendente humano: https://chat.google.com/room/AAAAHqHLj6c?cls=7',
102
+ ]
103
+ embeddings = model.encode(sentences)
104
+ print(embeddings.shape)
105
+ # [3, 384]
106
+
107
+ # Get the similarity scores for the embeddings
108
+ similarities = model.similarity(embeddings, embeddings)
109
+ print(similarities.shape)
110
+ # [3, 3]
111
+ ```
112
+
113
+ <!--
114
+ ### Direct Usage (Transformers)
115
+
116
+ <details><summary>Click to see the direct usage in Transformers</summary>
117
+
118
+ </details>
119
+ -->
120
+
121
+ <!--
122
+ ### Downstream Usage (Sentence Transformers)
123
+
124
+ You can finetune this model on your own dataset.
125
+
126
+ <details><summary>Click to expand</summary>
127
+
128
+ </details>
129
+ -->
130
+
131
+ <!--
132
+ ### Out-of-Scope Use
133
+
134
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
135
+ -->
136
+
137
+ <!--
138
+ ## Bias, Risks and Limitations
139
+
140
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
141
+ -->
142
+
143
+ <!--
144
+ ### Recommendations
145
+
146
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
147
+ -->
148
+
149
+ ## Training Details
150
+
151
+ ### Training Datasets
152
+
153
+ #### train
154
+
155
+ * Dataset: [train](https://huggingface.co/datasets/matunderstars/ufes-qa-data) at [9021242](https://huggingface.co/datasets/matunderstars/ufes-qa-data/tree/9021242881748c37acc972de64de25d00d54f4d1)
156
+ * Size: 92 training samples
157
+ * Columns: <code>question</code> and <code>answer</code>
158
+ * Approximate statistics based on the first 92 samples:
159
+ | | question | answer |
160
+ |:--------|:----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
161
+ | type | string | string |
162
+ | details | <ul><li>min: 7 tokens</li><li>mean: 17.88 tokens</li><li>max: 45 tokens</li></ul> | <ul><li>min: 14 tokens</li><li>mean: 46.03 tokens</li><li>max: 128 tokens</li></ul> |
163
+ * Samples:
164
+ | question | answer |
165
+ |:-------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
166
+ | <code>Como registrar atestado de saúde?</code> | <code>Realize o registro pelo aplicativo SouGov (Menu > Atestado de Saúde > Incluir > Selecionar arquivo no dispositivo) ou pelo Portal Sigepe em Gestão de Pessoas > Minha Saúde > Atestado Médico.</code> |
167
+ | <code>Como fazer uma doação ou empréstimo de um bem patrimonial?</code> | <code>Modelos estão em https://drm.saomateus.ufes.br → Patrimônio → Formulários e Modelos.</code> |
168
+ | <code>Onde encontrar informações sobre as salas de aula e a configuração de equipamentos?</code> | <code>Consulte o manual em https://dtin.saomateus.ufes.br/tecnologias-educacionais.</code> |
169
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
170
+ ```json
171
+ {
172
+ "scale": 20.0,
173
+ "similarity_fct": "cos_sim"
174
+ }
175
+ ```
176
+
177
+ #### test
178
+
179
+ * Dataset: [test](https://huggingface.co/datasets/matunderstars/ufes-qa-data) at [9021242](https://huggingface.co/datasets/matunderstars/ufes-qa-data/tree/9021242881748c37acc972de64de25d00d54f4d1)
180
+ * Size: 92 training samples
181
+ * Columns: <code>question</code> and <code>answer</code>
182
+ * Approximate statistics based on the first 92 samples:
183
+ | | question | answer |
184
+ |:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
185
+ | type | string | string |
186
+ | details | <ul><li>min: 9 tokens</li><li>mean: 17.32 tokens</li><li>max: 30 tokens</li></ul> | <ul><li>min: 15 tokens</li><li>mean: 40.58 tokens</li><li>max: 68 tokens</li></ul> |
187
+ * Samples:
188
+ | question | answer |
189
+ |:-----------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------|
190
+ | <code>Como acessar o manual do Estudo Técnico Preliminar (ETP)?</code> | <code>Acesse o manual em https://gov.br/compras/pt-br/centrais-de-conteudo/manuais/manual-etp-digital.</code> |
191
+ | <code>Como solicitar material de consumo?</code> | <code>Faça login em https://administrativo.ufes.br/sistema/catalogo-produtos/catalogo.</code> |
192
+ | <code>Problemas de conexão de internet</code> | <code>Problemas de conexão de internet podem ser causados por falhas de rede. Para resolver, entre em contato com o suporte de TI da UFES.</code> |
193
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
194
+ ```json
195
+ {
196
+ "scale": 20.0,
197
+ "similarity_fct": "cos_sim"
198
+ }
199
+ ```
200
+
201
+ ### Training Hyperparameters
202
+ #### Non-Default Hyperparameters
203
+
204
+ - `per_device_train_batch_size`: 16
205
+ - `per_device_eval_batch_size`: 16
206
+ - `num_train_epochs`: 150
207
+ - `warmup_ratio`: 0.1
208
+ - `fp16`: True
209
+ - `batch_sampler`: no_duplicates
210
+
211
+ #### All Hyperparameters
212
+ <details><summary>Click to expand</summary>
213
+
214
+ - `overwrite_output_dir`: False
215
+ - `do_predict`: False
216
+ - `eval_strategy`: no
217
+ - `prediction_loss_only`: True
218
+ - `per_device_train_batch_size`: 16
219
+ - `per_device_eval_batch_size`: 16
220
+ - `per_gpu_train_batch_size`: None
221
+ - `per_gpu_eval_batch_size`: None
222
+ - `gradient_accumulation_steps`: 1
223
+ - `eval_accumulation_steps`: None
224
+ - `torch_empty_cache_steps`: None
225
+ - `learning_rate`: 5e-05
226
+ - `weight_decay`: 0.0
227
+ - `adam_beta1`: 0.9
228
+ - `adam_beta2`: 0.999
229
+ - `adam_epsilon`: 1e-08
230
+ - `max_grad_norm`: 1.0
231
+ - `num_train_epochs`: 150
232
+ - `max_steps`: -1
233
+ - `lr_scheduler_type`: linear
234
+ - `lr_scheduler_kwargs`: {}
235
+ - `warmup_ratio`: 0.1
236
+ - `warmup_steps`: 0
237
+ - `log_level`: passive
238
+ - `log_level_replica`: warning
239
+ - `log_on_each_node`: True
240
+ - `logging_nan_inf_filter`: True
241
+ - `save_safetensors`: True
242
+ - `save_on_each_node`: False
243
+ - `save_only_model`: False
244
+ - `restore_callback_states_from_checkpoint`: False
245
+ - `no_cuda`: False
246
+ - `use_cpu`: False
247
+ - `use_mps_device`: False
248
+ - `seed`: 42
249
+ - `data_seed`: None
250
+ - `jit_mode_eval`: False
251
+ - `use_ipex`: False
252
+ - `bf16`: False
253
+ - `fp16`: True
254
+ - `fp16_opt_level`: O1
255
+ - `half_precision_backend`: auto
256
+ - `bf16_full_eval`: False
257
+ - `fp16_full_eval`: False
258
+ - `tf32`: None
259
+ - `local_rank`: 0
260
+ - `ddp_backend`: None
261
+ - `tpu_num_cores`: None
262
+ - `tpu_metrics_debug`: False
263
+ - `debug`: []
264
+ - `dataloader_drop_last`: False
265
+ - `dataloader_num_workers`: 0
266
+ - `dataloader_prefetch_factor`: None
267
+ - `past_index`: -1
268
+ - `disable_tqdm`: False
269
+ - `remove_unused_columns`: True
270
+ - `label_names`: None
271
+ - `load_best_model_at_end`: False
272
+ - `ignore_data_skip`: False
273
+ - `fsdp`: []
274
+ - `fsdp_min_num_params`: 0
275
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
276
+ - `fsdp_transformer_layer_cls_to_wrap`: None
277
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
278
+ - `deepspeed`: None
279
+ - `label_smoothing_factor`: 0.0
280
+ - `optim`: adamw_torch
281
+ - `optim_args`: None
282
+ - `adafactor`: False
283
+ - `group_by_length`: False
284
+ - `length_column_name`: length
285
+ - `ddp_find_unused_parameters`: None
286
+ - `ddp_bucket_cap_mb`: None
287
+ - `ddp_broadcast_buffers`: False
288
+ - `dataloader_pin_memory`: True
289
+ - `dataloader_persistent_workers`: False
290
+ - `skip_memory_metrics`: True
291
+ - `use_legacy_prediction_loop`: False
292
+ - `push_to_hub`: False
293
+ - `resume_from_checkpoint`: None
294
+ - `hub_model_id`: None
295
+ - `hub_strategy`: every_save
296
+ - `hub_private_repo`: False
297
+ - `hub_always_push`: False
298
+ - `gradient_checkpointing`: False
299
+ - `gradient_checkpointing_kwargs`: None
300
+ - `include_inputs_for_metrics`: False
301
+ - `include_for_metrics`: []
302
+ - `eval_do_concat_batches`: True
303
+ - `fp16_backend`: auto
304
+ - `push_to_hub_model_id`: None
305
+ - `push_to_hub_organization`: None
306
+ - `mp_parameters`:
307
+ - `auto_find_batch_size`: False
308
+ - `full_determinism`: False
309
+ - `torchdynamo`: None
310
+ - `ray_scope`: last
311
+ - `ddp_timeout`: 1800
312
+ - `torch_compile`: False
313
+ - `torch_compile_backend`: None
314
+ - `torch_compile_mode`: None
315
+ - `dispatch_batches`: None
316
+ - `split_batches`: None
317
+ - `include_tokens_per_second`: False
318
+ - `include_num_input_tokens_seen`: False
319
+ - `neftune_noise_alpha`: None
320
+ - `optim_target_modules`: None
321
+ - `batch_eval_metrics`: False
322
+ - `eval_on_start`: False
323
+ - `use_liger_kernel`: False
324
+ - `eval_use_gather_object`: False
325
+ - `average_tokens_across_devices`: False
326
+ - `prompts`: None
327
+ - `batch_sampler`: no_duplicates
328
+ - `multi_dataset_batch_sampler`: proportional
329
+
330
+ </details>
331
+
332
+ ### Training Logs
333
+ | Epoch | Step | Training Loss |
334
+ |:--------:|:----:|:-------------:|
335
+ | 71.4286 | 500 | 0.1147 |
336
+ | 142.8571 | 1000 | 0.0001 |
337
+
338
+
339
+ ### Framework Versions
340
+ - Python: 3.10.12
341
+ - Sentence Transformers: 3.3.1
342
+ - Transformers: 4.46.2
343
+ - PyTorch: 2.5.1+cu121
344
+ - Accelerate: 1.1.1
345
+ - Datasets: 3.1.0
346
+ - Tokenizers: 0.20.3
347
+
348
+ ## Citation
349
+
350
+ ### BibTeX
351
+
352
+ #### Sentence Transformers
353
+ ```bibtex
354
+ @inproceedings{reimers-2019-sentence-bert,
355
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
356
+ author = "Reimers, Nils and Gurevych, Iryna",
357
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
358
+ month = "11",
359
+ year = "2019",
360
+ publisher = "Association for Computational Linguistics",
361
+ url = "https://arxiv.org/abs/1908.10084",
362
+ }
363
+ ```
364
+
365
+ #### MultipleNegativesRankingLoss
366
+ ```bibtex
367
+ @misc{henderson2017efficient,
368
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
369
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
370
+ year={2017},
371
+ eprint={1705.00652},
372
+ archivePrefix={arXiv},
373
+ primaryClass={cs.CL}
374
+ }
375
+ ```
376
+
377
+ <!--
378
+ ## Glossary
379
+
380
+ *Clearly define terms in order to be accessible across audiences.*
381
+ -->
382
+
383
+ <!--
384
+ ## Model Card Authors
385
+
386
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
387
+ -->
388
+
389
+ <!--
390
+ ## Model Card Contact
391
+
392
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
393
+ -->
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "sentence-transformers/all-MiniLM-L12-v2",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 384,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 1536,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 0,
20
+ "position_embedding_type": "absolute",
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.46.2",
23
+ "type_vocab_size": 2,
24
+ "use_cache": true,
25
+ "vocab_size": 30522
26
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.3.1",
4
+ "transformers": "4.46.2",
5
+ "pytorch": "2.5.1+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e11c7c744991ece719cce40a502896348234c72d66073fdb9925b534e9d3efc6
3
+ size 133462128
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 128,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": false,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "max_length": 128,
50
+ "model_max_length": 128,
51
+ "never_split": null,
52
+ "pad_to_multiple_of": null,
53
+ "pad_token": "[PAD]",
54
+ "pad_token_type_id": 0,
55
+ "padding_side": "right",
56
+ "sep_token": "[SEP]",
57
+ "stride": 0,
58
+ "strip_accents": null,
59
+ "tokenize_chinese_chars": true,
60
+ "tokenizer_class": "BertTokenizer",
61
+ "truncation_side": "right",
62
+ "truncation_strategy": "longest_first",
63
+ "unk_token": "[UNK]"
64
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff