matthieulel commited on
Commit
82b9a04
·
verified ·
1 Parent(s): a91a203

Model save

Browse files
Files changed (2) hide show
  1. README.md +98 -0
  2. model.safetensors +1 -1
README.md ADDED
@@ -0,0 +1,98 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: microsoft/swinv2-base-patch4-window8-256
4
+ tags:
5
+ - generated_from_trainer
6
+ metrics:
7
+ - accuracy
8
+ - precision
9
+ - recall
10
+ - f1
11
+ model-index:
12
+ - name: swinv2-base-patch4-window8-256-finetuned-galaxy10-decals
13
+ results: []
14
+ ---
15
+
16
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
17
+ should probably proofread and complete it, then remove this comment. -->
18
+
19
+ # swinv2-base-patch4-window8-256-finetuned-galaxy10-decals
20
+
21
+ This model is a fine-tuned version of [microsoft/swinv2-base-patch4-window8-256](https://huggingface.co/microsoft/swinv2-base-patch4-window8-256) on an unknown dataset.
22
+ It achieves the following results on the evaluation set:
23
+ - Loss: 0.4876
24
+ - Accuracy: 0.8517
25
+ - Precision: 0.8516
26
+ - Recall: 0.8517
27
+ - F1: 0.8497
28
+
29
+ ## Model description
30
+
31
+ More information needed
32
+
33
+ ## Intended uses & limitations
34
+
35
+ More information needed
36
+
37
+ ## Training and evaluation data
38
+
39
+ More information needed
40
+
41
+ ## Training procedure
42
+
43
+ ### Training hyperparameters
44
+
45
+ The following hyperparameters were used during training:
46
+ - learning_rate: 5e-05
47
+ - train_batch_size: 64
48
+ - eval_batch_size: 64
49
+ - seed: 42
50
+ - gradient_accumulation_steps: 4
51
+ - total_train_batch_size: 256
52
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
53
+ - lr_scheduler_type: linear
54
+ - lr_scheduler_warmup_ratio: 0.1
55
+ - num_epochs: 30
56
+
57
+ ### Training results
58
+
59
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
60
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
61
+ | 1.6195 | 0.99 | 62 | 1.4006 | 0.5101 | 0.4910 | 0.5101 | 0.4782 |
62
+ | 0.9423 | 2.0 | 125 | 0.7209 | 0.7616 | 0.7617 | 0.7616 | 0.7531 |
63
+ | 0.8171 | 2.99 | 187 | 0.5842 | 0.8010 | 0.7950 | 0.8010 | 0.7938 |
64
+ | 0.6609 | 4.0 | 250 | 0.5000 | 0.8224 | 0.8159 | 0.8224 | 0.8143 |
65
+ | 0.5927 | 4.99 | 312 | 0.5367 | 0.8191 | 0.8211 | 0.8191 | 0.8184 |
66
+ | 0.624 | 6.0 | 375 | 0.4946 | 0.8286 | 0.8295 | 0.8286 | 0.8212 |
67
+ | 0.5891 | 6.99 | 437 | 0.5068 | 0.8219 | 0.8244 | 0.8219 | 0.8201 |
68
+ | 0.5597 | 8.0 | 500 | 0.5071 | 0.8230 | 0.8382 | 0.8230 | 0.8198 |
69
+ | 0.5292 | 8.99 | 562 | 0.4464 | 0.8444 | 0.8462 | 0.8444 | 0.8426 |
70
+ | 0.5143 | 10.0 | 625 | 0.4556 | 0.8371 | 0.8420 | 0.8371 | 0.8350 |
71
+ | 0.5122 | 10.99 | 687 | 0.4765 | 0.8382 | 0.8433 | 0.8382 | 0.8369 |
72
+ | 0.4647 | 12.0 | 750 | 0.4900 | 0.8365 | 0.8443 | 0.8365 | 0.8348 |
73
+ | 0.4769 | 12.99 | 812 | 0.4639 | 0.8427 | 0.8475 | 0.8427 | 0.8396 |
74
+ | 0.4804 | 14.0 | 875 | 0.4468 | 0.8484 | 0.8499 | 0.8484 | 0.8461 |
75
+ | 0.4452 | 14.99 | 937 | 0.4492 | 0.8512 | 0.8522 | 0.8512 | 0.8505 |
76
+ | 0.4283 | 16.0 | 1000 | 0.4660 | 0.8433 | 0.8446 | 0.8433 | 0.8401 |
77
+ | 0.3788 | 16.99 | 1062 | 0.4689 | 0.8478 | 0.8454 | 0.8478 | 0.8444 |
78
+ | 0.41 | 18.0 | 1125 | 0.4543 | 0.8506 | 0.8502 | 0.8506 | 0.8480 |
79
+ | 0.4007 | 18.99 | 1187 | 0.4766 | 0.8478 | 0.8511 | 0.8478 | 0.8455 |
80
+ | 0.406 | 20.0 | 1250 | 0.4716 | 0.8478 | 0.8474 | 0.8478 | 0.8444 |
81
+ | 0.3777 | 20.99 | 1312 | 0.5026 | 0.8455 | 0.8454 | 0.8455 | 0.8430 |
82
+ | 0.3972 | 22.0 | 1375 | 0.5108 | 0.8393 | 0.8402 | 0.8393 | 0.8371 |
83
+ | 0.3665 | 22.99 | 1437 | 0.4934 | 0.8489 | 0.8498 | 0.8489 | 0.8474 |
84
+ | 0.3569 | 24.0 | 1500 | 0.4989 | 0.8495 | 0.8495 | 0.8495 | 0.8478 |
85
+ | 0.3735 | 24.99 | 1562 | 0.4918 | 0.8495 | 0.8468 | 0.8495 | 0.8468 |
86
+ | 0.3301 | 26.0 | 1625 | 0.4927 | 0.8512 | 0.8512 | 0.8512 | 0.8488 |
87
+ | 0.3438 | 26.99 | 1687 | 0.4829 | 0.8540 | 0.8529 | 0.8540 | 0.8520 |
88
+ | 0.3553 | 28.0 | 1750 | 0.4935 | 0.8540 | 0.8530 | 0.8540 | 0.8512 |
89
+ | 0.3312 | 28.99 | 1812 | 0.4882 | 0.8517 | 0.8509 | 0.8517 | 0.8491 |
90
+ | 0.3319 | 29.76 | 1860 | 0.4876 | 0.8517 | 0.8516 | 0.8517 | 0.8497 |
91
+
92
+
93
+ ### Framework versions
94
+
95
+ - Transformers 4.37.2
96
+ - Pytorch 2.3.0
97
+ - Datasets 2.19.1
98
+ - Tokenizers 0.15.1
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:721246f83289bbd6afd9a734d332d95183b3295cf598cdc432b6447f2e156811
3
  size 347678296
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:742a42286c7c8814da9d3ec4996c62a03e952f6c8cd6c83999c7ad8605aed11d
3
  size 347678296