File size: 2,879 Bytes
91ae496
 
 
 
317a9a8
 
91ae496
 
 
 
 
 
 
 
 
 
 
 
 
317a9a8
91ae496
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
---
license: apache-2.0
base_model: facebook/dinov2-small-imagenet1k-1-layer
tags:
- image-classification
- vision
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: dinov2-small-imagenet1k-1-layer-finetuned-galaxy10-decals
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# dinov2-small-imagenet1k-1-layer-finetuned-galaxy10-decals

This model is a fine-tuned version of [facebook/dinov2-small-imagenet1k-1-layer](https://huggingface.co/facebook/dinov2-small-imagenet1k-1-layer) on the matthieulel/galaxy10_decals dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0579
- Accuracy: 0.6387

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-07
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 20

### Training results

| Training Loss | Epoch   | Step | Validation Loss | Accuracy |
|:-------------:|:-------:|:----:|:---------------:|:--------:|
| 3.2794        | 0.9940  | 124  | 3.2713          | 0.0924   |
| 2.2032        | 1.9960  | 249  | 2.1443          | 0.2401   |
| 1.9114        | 2.9980  | 374  | 1.8624          | 0.3777   |
| 1.6905        | 4.0     | 499  | 1.6865          | 0.4453   |
| 1.5548        | 4.9940  | 623  | 1.5515          | 0.4853   |
| 1.4678        | 5.9960  | 748  | 1.4546          | 0.5068   |
| 1.3977        | 6.9980  | 873  | 1.3747          | 0.5372   |
| 1.3531        | 8.0     | 998  | 1.3144          | 0.5536   |
| 1.3098        | 8.9940  | 1122 | 1.2655          | 0.5660   |
| 1.2152        | 9.9960  | 1247 | 1.2197          | 0.5817   |
| 1.2257        | 10.9980 | 1372 | 1.1856          | 0.5924   |
| 1.1706        | 12.0    | 1497 | 1.1540          | 0.6082   |
| 1.1836        | 12.9940 | 1621 | 1.1286          | 0.6122   |
| 1.1769        | 13.9960 | 1746 | 1.1120          | 0.6161   |
| 1.1197        | 14.9980 | 1871 | 1.0943          | 0.6234   |
| 1.1373        | 16.0    | 1996 | 1.0772          | 0.6308   |
| 1.1111        | 16.9940 | 2120 | 1.0714          | 0.6330   |
| 1.1274        | 17.9960 | 2245 | 1.0624          | 0.6336   |
| 1.0801        | 18.9980 | 2370 | 1.0584          | 0.6381   |
| 1.0979        | 19.8798 | 2480 | 1.0579          | 0.6387   |


### Framework versions

- Transformers 4.40.1
- Pytorch 2.1.1+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1