matthieulel commited on
Commit
d3ed16e
·
verified ·
1 Parent(s): b8a8066

Model save

Browse files
Files changed (2) hide show
  1. README.md +98 -0
  2. model.safetensors +1 -1
README.md ADDED
@@ -0,0 +1,98 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: facebook/convnextv2-nano-1k-224
4
+ tags:
5
+ - generated_from_trainer
6
+ metrics:
7
+ - accuracy
8
+ - precision
9
+ - recall
10
+ - f1
11
+ model-index:
12
+ - name: convnextv2-nano-1k-224-finetuned-galaxy10-decals
13
+ results: []
14
+ ---
15
+
16
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
17
+ should probably proofread and complete it, then remove this comment. -->
18
+
19
+ # convnextv2-nano-1k-224-finetuned-galaxy10-decals
20
+
21
+ This model is a fine-tuned version of [facebook/convnextv2-nano-1k-224](https://huggingface.co/facebook/convnextv2-nano-1k-224) on an unknown dataset.
22
+ It achieves the following results on the evaluation set:
23
+ - Loss: 0.7043
24
+ - Accuracy: 0.8557
25
+ - Precision: 0.8540
26
+ - Recall: 0.8557
27
+ - F1: 0.8541
28
+
29
+ ## Model description
30
+
31
+ More information needed
32
+
33
+ ## Intended uses & limitations
34
+
35
+ More information needed
36
+
37
+ ## Training and evaluation data
38
+
39
+ More information needed
40
+
41
+ ## Training procedure
42
+
43
+ ### Training hyperparameters
44
+
45
+ The following hyperparameters were used during training:
46
+ - learning_rate: 5e-05
47
+ - train_batch_size: 64
48
+ - eval_batch_size: 64
49
+ - seed: 42
50
+ - gradient_accumulation_steps: 4
51
+ - total_train_batch_size: 256
52
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
53
+ - lr_scheduler_type: linear
54
+ - lr_scheduler_warmup_ratio: 0.1
55
+ - num_epochs: 30
56
+
57
+ ### Training results
58
+
59
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
60
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
61
+ | 1.0509 | 0.99 | 62 | 0.9876 | 0.6561 | 0.6692 | 0.6561 | 0.6355 |
62
+ | 0.8315 | 2.0 | 125 | 0.6745 | 0.7638 | 0.7726 | 0.7638 | 0.7581 |
63
+ | 0.7659 | 2.99 | 187 | 0.6651 | 0.7897 | 0.8092 | 0.7897 | 0.7858 |
64
+ | 0.6645 | 4.0 | 250 | 0.6068 | 0.8027 | 0.8117 | 0.8027 | 0.8031 |
65
+ | 0.6212 | 4.99 | 312 | 0.5895 | 0.8061 | 0.8158 | 0.8061 | 0.8058 |
66
+ | 0.624 | 6.0 | 375 | 0.5128 | 0.8269 | 0.8223 | 0.8269 | 0.8220 |
67
+ | 0.5648 | 6.99 | 437 | 0.5219 | 0.8196 | 0.8239 | 0.8196 | 0.8171 |
68
+ | 0.5235 | 8.0 | 500 | 0.5652 | 0.8275 | 0.8303 | 0.8275 | 0.8270 |
69
+ | 0.5316 | 8.99 | 562 | 0.4804 | 0.8427 | 0.8431 | 0.8427 | 0.8396 |
70
+ | 0.4756 | 10.0 | 625 | 0.5345 | 0.8213 | 0.8188 | 0.8213 | 0.8169 |
71
+ | 0.4758 | 10.99 | 687 | 0.5560 | 0.8326 | 0.8324 | 0.8326 | 0.8302 |
72
+ | 0.4499 | 12.0 | 750 | 0.5283 | 0.8416 | 0.8458 | 0.8416 | 0.8423 |
73
+ | 0.4274 | 12.99 | 812 | 0.5347 | 0.8348 | 0.8364 | 0.8348 | 0.8337 |
74
+ | 0.4148 | 14.0 | 875 | 0.5326 | 0.8422 | 0.8396 | 0.8422 | 0.8383 |
75
+ | 0.3822 | 14.99 | 937 | 0.5116 | 0.8410 | 0.8442 | 0.8410 | 0.8412 |
76
+ | 0.3613 | 16.0 | 1000 | 0.6081 | 0.8230 | 0.8245 | 0.8230 | 0.8210 |
77
+ | 0.2903 | 16.99 | 1062 | 0.6212 | 0.8298 | 0.8289 | 0.8298 | 0.8275 |
78
+ | 0.3405 | 18.0 | 1125 | 0.6093 | 0.8377 | 0.8394 | 0.8377 | 0.8368 |
79
+ | 0.2999 | 18.99 | 1187 | 0.6482 | 0.8393 | 0.8352 | 0.8393 | 0.8356 |
80
+ | 0.2792 | 20.0 | 1250 | 0.6473 | 0.8484 | 0.8482 | 0.8484 | 0.8419 |
81
+ | 0.2681 | 20.99 | 1312 | 0.6710 | 0.8467 | 0.8428 | 0.8467 | 0.8425 |
82
+ | 0.2966 | 22.0 | 1375 | 0.6355 | 0.8534 | 0.8513 | 0.8534 | 0.8514 |
83
+ | 0.2609 | 22.99 | 1437 | 0.6850 | 0.8399 | 0.8406 | 0.8399 | 0.8397 |
84
+ | 0.2281 | 24.0 | 1500 | 0.7124 | 0.8444 | 0.8444 | 0.8444 | 0.8440 |
85
+ | 0.2354 | 24.99 | 1562 | 0.7317 | 0.8427 | 0.8394 | 0.8427 | 0.8395 |
86
+ | 0.2188 | 26.0 | 1625 | 0.6753 | 0.8512 | 0.8490 | 0.8512 | 0.8489 |
87
+ | 0.2118 | 26.99 | 1687 | 0.6865 | 0.8506 | 0.8495 | 0.8506 | 0.8494 |
88
+ | 0.2232 | 28.0 | 1750 | 0.7098 | 0.8557 | 0.8531 | 0.8557 | 0.8535 |
89
+ | 0.2104 | 28.99 | 1812 | 0.7023 | 0.8591 | 0.8565 | 0.8591 | 0.8566 |
90
+ | 0.1936 | 29.76 | 1860 | 0.7043 | 0.8557 | 0.8540 | 0.8557 | 0.8541 |
91
+
92
+
93
+ ### Framework versions
94
+
95
+ - Transformers 4.37.2
96
+ - Pytorch 2.3.0
97
+ - Datasets 2.19.1
98
+ - Tokenizers 0.15.1
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:c820360e44e04fd88a6d6e81dc5b94e8aa955affc9b835a0c4636e4a3b521721
3
  size 59975736
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f2fbb3311b844bf70ae551cc64f777e383e30d3c2082ee256a518e806174ea36
3
  size 59975736