Model save
Browse files- README.md +98 -0
- model.safetensors +1 -1
README.md
ADDED
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model: facebook/convnextv2-nano-1k-224
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- accuracy
|
8 |
+
- precision
|
9 |
+
- recall
|
10 |
+
- f1
|
11 |
+
model-index:
|
12 |
+
- name: convnextv2-nano-1k-224-finetuned-galaxy10-decals
|
13 |
+
results: []
|
14 |
+
---
|
15 |
+
|
16 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
17 |
+
should probably proofread and complete it, then remove this comment. -->
|
18 |
+
|
19 |
+
# convnextv2-nano-1k-224-finetuned-galaxy10-decals
|
20 |
+
|
21 |
+
This model is a fine-tuned version of [facebook/convnextv2-nano-1k-224](https://huggingface.co/facebook/convnextv2-nano-1k-224) on an unknown dataset.
|
22 |
+
It achieves the following results on the evaluation set:
|
23 |
+
- Loss: 0.7043
|
24 |
+
- Accuracy: 0.8557
|
25 |
+
- Precision: 0.8540
|
26 |
+
- Recall: 0.8557
|
27 |
+
- F1: 0.8541
|
28 |
+
|
29 |
+
## Model description
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Intended uses & limitations
|
34 |
+
|
35 |
+
More information needed
|
36 |
+
|
37 |
+
## Training and evaluation data
|
38 |
+
|
39 |
+
More information needed
|
40 |
+
|
41 |
+
## Training procedure
|
42 |
+
|
43 |
+
### Training hyperparameters
|
44 |
+
|
45 |
+
The following hyperparameters were used during training:
|
46 |
+
- learning_rate: 5e-05
|
47 |
+
- train_batch_size: 64
|
48 |
+
- eval_batch_size: 64
|
49 |
+
- seed: 42
|
50 |
+
- gradient_accumulation_steps: 4
|
51 |
+
- total_train_batch_size: 256
|
52 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
53 |
+
- lr_scheduler_type: linear
|
54 |
+
- lr_scheduler_warmup_ratio: 0.1
|
55 |
+
- num_epochs: 30
|
56 |
+
|
57 |
+
### Training results
|
58 |
+
|
59 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|
60 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
|
61 |
+
| 1.0509 | 0.99 | 62 | 0.9876 | 0.6561 | 0.6692 | 0.6561 | 0.6355 |
|
62 |
+
| 0.8315 | 2.0 | 125 | 0.6745 | 0.7638 | 0.7726 | 0.7638 | 0.7581 |
|
63 |
+
| 0.7659 | 2.99 | 187 | 0.6651 | 0.7897 | 0.8092 | 0.7897 | 0.7858 |
|
64 |
+
| 0.6645 | 4.0 | 250 | 0.6068 | 0.8027 | 0.8117 | 0.8027 | 0.8031 |
|
65 |
+
| 0.6212 | 4.99 | 312 | 0.5895 | 0.8061 | 0.8158 | 0.8061 | 0.8058 |
|
66 |
+
| 0.624 | 6.0 | 375 | 0.5128 | 0.8269 | 0.8223 | 0.8269 | 0.8220 |
|
67 |
+
| 0.5648 | 6.99 | 437 | 0.5219 | 0.8196 | 0.8239 | 0.8196 | 0.8171 |
|
68 |
+
| 0.5235 | 8.0 | 500 | 0.5652 | 0.8275 | 0.8303 | 0.8275 | 0.8270 |
|
69 |
+
| 0.5316 | 8.99 | 562 | 0.4804 | 0.8427 | 0.8431 | 0.8427 | 0.8396 |
|
70 |
+
| 0.4756 | 10.0 | 625 | 0.5345 | 0.8213 | 0.8188 | 0.8213 | 0.8169 |
|
71 |
+
| 0.4758 | 10.99 | 687 | 0.5560 | 0.8326 | 0.8324 | 0.8326 | 0.8302 |
|
72 |
+
| 0.4499 | 12.0 | 750 | 0.5283 | 0.8416 | 0.8458 | 0.8416 | 0.8423 |
|
73 |
+
| 0.4274 | 12.99 | 812 | 0.5347 | 0.8348 | 0.8364 | 0.8348 | 0.8337 |
|
74 |
+
| 0.4148 | 14.0 | 875 | 0.5326 | 0.8422 | 0.8396 | 0.8422 | 0.8383 |
|
75 |
+
| 0.3822 | 14.99 | 937 | 0.5116 | 0.8410 | 0.8442 | 0.8410 | 0.8412 |
|
76 |
+
| 0.3613 | 16.0 | 1000 | 0.6081 | 0.8230 | 0.8245 | 0.8230 | 0.8210 |
|
77 |
+
| 0.2903 | 16.99 | 1062 | 0.6212 | 0.8298 | 0.8289 | 0.8298 | 0.8275 |
|
78 |
+
| 0.3405 | 18.0 | 1125 | 0.6093 | 0.8377 | 0.8394 | 0.8377 | 0.8368 |
|
79 |
+
| 0.2999 | 18.99 | 1187 | 0.6482 | 0.8393 | 0.8352 | 0.8393 | 0.8356 |
|
80 |
+
| 0.2792 | 20.0 | 1250 | 0.6473 | 0.8484 | 0.8482 | 0.8484 | 0.8419 |
|
81 |
+
| 0.2681 | 20.99 | 1312 | 0.6710 | 0.8467 | 0.8428 | 0.8467 | 0.8425 |
|
82 |
+
| 0.2966 | 22.0 | 1375 | 0.6355 | 0.8534 | 0.8513 | 0.8534 | 0.8514 |
|
83 |
+
| 0.2609 | 22.99 | 1437 | 0.6850 | 0.8399 | 0.8406 | 0.8399 | 0.8397 |
|
84 |
+
| 0.2281 | 24.0 | 1500 | 0.7124 | 0.8444 | 0.8444 | 0.8444 | 0.8440 |
|
85 |
+
| 0.2354 | 24.99 | 1562 | 0.7317 | 0.8427 | 0.8394 | 0.8427 | 0.8395 |
|
86 |
+
| 0.2188 | 26.0 | 1625 | 0.6753 | 0.8512 | 0.8490 | 0.8512 | 0.8489 |
|
87 |
+
| 0.2118 | 26.99 | 1687 | 0.6865 | 0.8506 | 0.8495 | 0.8506 | 0.8494 |
|
88 |
+
| 0.2232 | 28.0 | 1750 | 0.7098 | 0.8557 | 0.8531 | 0.8557 | 0.8535 |
|
89 |
+
| 0.2104 | 28.99 | 1812 | 0.7023 | 0.8591 | 0.8565 | 0.8591 | 0.8566 |
|
90 |
+
| 0.1936 | 29.76 | 1860 | 0.7043 | 0.8557 | 0.8540 | 0.8557 | 0.8541 |
|
91 |
+
|
92 |
+
|
93 |
+
### Framework versions
|
94 |
+
|
95 |
+
- Transformers 4.37.2
|
96 |
+
- Pytorch 2.3.0
|
97 |
+
- Datasets 2.19.1
|
98 |
+
- Tokenizers 0.15.1
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 59975736
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f2fbb3311b844bf70ae551cc64f777e383e30d3c2082ee256a518e806174ea36
|
3 |
size 59975736
|