Initial commit
Browse files- README.md +1 -1
- a2c-PandaReachDense-v2.zip +2 -2
- a2c-PandaReachDense-v2/data +18 -18
- a2c-PandaReachDense-v2/policy.optimizer.pth +1 -1
- a2c-PandaReachDense-v2/policy.pth +1 -1
- config.json +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
- vec_normalize.pkl +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value: -
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: -0.37 +/- 0.13
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
a2c-PandaReachDense-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7a261bad6f3ed45039991080762630d426e0e376425a5fadb80bb87fbf5abf64
|
3 |
+
size 108016
|
a2c-PandaReachDense-v2/data
CHANGED
@@ -4,9 +4,9 @@
|
|
4 |
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function MultiInputActorCriticPolicy.__init__ at
|
8 |
"__abstractmethods__": "frozenset()",
|
9 |
-
"_abc_impl": "<_abc._abc_data object at
|
10 |
},
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {
|
@@ -40,36 +40,36 @@
|
|
40 |
"bounded_above": "[ True True True]",
|
41 |
"_np_random": null
|
42 |
},
|
43 |
-
"n_envs":
|
44 |
-
"num_timesteps":
|
45 |
-
"_total_timesteps":
|
46 |
"_num_timesteps_at_start": 0,
|
47 |
"seed": null,
|
48 |
"action_noise": null,
|
49 |
-
"start_time":
|
50 |
-
"learning_rate": 0.
|
51 |
"tensorboard_log": null,
|
52 |
"lr_schedule": {
|
53 |
":type:": "<class 'function'>",
|
54 |
-
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/
|
55 |
},
|
56 |
"_last_obs": {
|
57 |
":type:": "<class 'collections.OrderedDict'>",
|
58 |
-
":serialized:": "
|
59 |
-
"achieved_goal": "[[
|
60 |
-
"desired_goal": "[[
|
61 |
-
"observation": "[[ 0.
|
62 |
},
|
63 |
"_last_episode_starts": {
|
64 |
":type:": "<class 'numpy.ndarray'>",
|
65 |
-
":serialized:": "
|
66 |
},
|
67 |
"_last_original_obs": {
|
68 |
":type:": "<class 'collections.OrderedDict'>",
|
69 |
-
":serialized:": "
|
70 |
-
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]
|
71 |
-
"desired_goal": "[[
|
72 |
-
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]
|
73 |
},
|
74 |
"_episode_num": 0,
|
75 |
"use_sde": false,
|
@@ -77,7 +77,7 @@
|
|
77 |
"_current_progress_remaining": 0.0,
|
78 |
"ep_info_buffer": {
|
79 |
":type:": "<class 'collections.deque'>",
|
80 |
-
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
81 |
},
|
82 |
"ep_success_buffer": {
|
83 |
":type:": "<class 'collections.deque'>",
|
|
|
4 |
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7efc8e8d98b0>",
|
8 |
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x7efc8e8db540>"
|
10 |
},
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {
|
|
|
40 |
"bounded_above": "[ True True True]",
|
41 |
"_np_random": null
|
42 |
},
|
43 |
+
"n_envs": 4,
|
44 |
+
"num_timesteps": 1500000,
|
45 |
+
"_total_timesteps": 1500000,
|
46 |
"_num_timesteps_at_start": 0,
|
47 |
"seed": null,
|
48 |
"action_noise": null,
|
49 |
+
"start_time": 1679331351783659202,
|
50 |
+
"learning_rate": 0.0001,
|
51 |
"tensorboard_log": null,
|
52 |
"lr_schedule": {
|
53 |
":type:": "<class 'function'>",
|
54 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/Gjbi6xxDLYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
55 |
},
|
56 |
"_last_obs": {
|
57 |
":type:": "<class 'collections.OrderedDict'>",
|
58 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAl2OxPt4WTzu0jQc/l2OxPt4WTzu0jQc/l2OxPt4WTzu0jQc/l2OxPt4WTzu0jQc/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA6rhEP5r7MT9YQIy/WyPbv2Q2Rj69ofY+Vpguv5HhaD+XtEa/11dnPlcsoD73C6+/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACXY7E+3hZPO7SNBz9LNyC8Fkk8uiW5wzqXY7E+3hZPO7SNBz9LNyC8Fkk8uiW5wzqXY7E+3hZPO7SNBz9LNyC8Fkk8uiW5wzqXY7E+3hZPO7SNBz9LNyC8Fkk8uiW5wzqUaA5LBEsGhpRoEnSUUpR1Lg==",
|
59 |
+
"achieved_goal": "[[0.34646294 0.00315993 0.52950597]\n [0.34646294 0.00315993 0.52950597]\n [0.34646294 0.00315993 0.52950597]\n [0.34646294 0.00315993 0.52950597]]",
|
60 |
+
"desired_goal": "[[ 0.76844656 0.6952454 -1.0957136 ]\n [-1.7120165 0.19356686 0.48170272]\n [-0.68201196 0.9096919 -0.7761931 ]\n [ 0.22592102 0.3128383 -1.3675526 ]]",
|
61 |
+
"observation": "[[ 0.34646294 0.00315993 0.52950597 -0.00977881 -0.00071825 0.00149325]\n [ 0.34646294 0.00315993 0.52950597 -0.00977881 -0.00071825 0.00149325]\n [ 0.34646294 0.00315993 0.52950597 -0.00977881 -0.00071825 0.00149325]\n [ 0.34646294 0.00315993 0.52950597 -0.00977881 -0.00071825 0.00149325]]"
|
62 |
},
|
63 |
"_last_episode_starts": {
|
64 |
":type:": "<class 'numpy.ndarray'>",
|
65 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
66 |
},
|
67 |
"_last_original_obs": {
|
68 |
":type:": "<class 'collections.OrderedDict'>",
|
69 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAYHvcvTotV7uhgF8+pVhyvA+rir0cg2A9pCEFPs1nzL3Ev5Y+Bxn8vdU3B75MBm4+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
70 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
71 |
+
"desired_goal": "[[-0.10765719 -0.00328334 0.21826412]\n [-0.01479164 -0.06770908 0.05481254]\n [ 0.13001114 -0.09980736 0.2944318 ]\n [-0.12309461 -0.13204892 0.2324459 ]]",
|
72 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
73 |
},
|
74 |
"_episode_num": 0,
|
75 |
"use_sde": false,
|
|
|
77 |
"_current_progress_remaining": 0.0,
|
78 |
"ep_info_buffer": {
|
79 |
":type:": "<class 'collections.deque'>",
|
80 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIcJhokIKn37+UhpRSlIwBbJRLMowBdJRHQLD/xS619fF1fZQoaAZoCWgPQwgVjErqBDTev5SGlFKUaBVLMmgWR0Cw/5lyNn5BdX2UKGgGaAloD0MIGr/wSpLn6L+UhpRSlGgVSzJoFkdAsP9ul54W13V9lChoBmgJaA9DCP28qUiFsem/lIaUUpRoFUsyaBZHQLD/Q0jTrmh1fZQoaAZoCWgPQwhO0vwxrc3iv5SGlFKUaBVLMmgWR0CxAKYwIt17dX2UKGgGaAloD0MIk1M7w9SW4b+UhpRSlGgVSzJoFkdAsQB6iM5wO3V9lChoBmgJaA9DCNRkxttKr+K/lIaUUpRoFUsyaBZHQLEATy1eBxx1fZQoaAZoCWgPQwicqKW5FcLnv5SGlFKUaBVLMmgWR0CxACOSfUWmdX2UKGgGaAloD0MIINPaNLbX4L+UhpRSlGgVSzJoFkdAsQGZKdxyXHV9lChoBmgJaA9DCHf2lQfpKeO/lIaUUpRoFUsyaBZHQLEBbcclw991fZQoaAZoCWgPQwgs1JrmHafmv5SGlFKUaBVLMmgWR0CxAUKP0Zm7dX2UKGgGaAloD0MIda4oJQQr5r+UhpRSlGgVSzJoFkdAsQEXYwqRU3V9lChoBmgJaA9DCDYDXJAty+C/lIaUUpRoFUsyaBZHQLEClrIo3Jh1fZQoaAZoCWgPQwhC6KBLOPThv5SGlFKUaBVLMmgWR0CxAmsf7rLRdX2UKGgGaAloD0MIVaLsLeV82b+UhpRSlGgVSzJoFkdAsQI/ocJdB3V9lChoBmgJaA9DCJULlX8tL+K/lIaUUpRoFUsyaBZHQLECFHKwIMV1fZQoaAZoCWgPQwjexmZHqm/mv5SGlFKUaBVLMmgWR0CxA4aMefZmdX2UKGgGaAloD0MIym5m9KNh4b+UhpRSlGgVSzJoFkdAsQNazJIUanV9lChoBmgJaA9DCFVQUfUrneG/lIaUUpRoFUsyaBZHQLEDL1SOzY51fZQoaAZoCWgPQwiRe7q6YzHkv5SGlFKUaBVLMmgWR0CxAwPpljEvdX2UKGgGaAloD0MIRN5y9WOT5b+UhpRSlGgVSzJoFkdAsQRmePJaJXV9lChoBmgJaA9DCFsLs9DOaeC/lIaUUpRoFUsyaBZHQLEEOmqo60Z1fZQoaAZoCWgPQwihoupXOh/ev5SGlFKUaBVLMmgWR0CxBA6EOAiFdX2UKGgGaAloD0MILNfbZirE6L+UhpRSlGgVSzJoFkdAsQPikdmxuHV9lChoBmgJaA9DCDjb3JiesN6/lIaUUpRoFUsyaBZHQLEE7+kP+XJ1fZQoaAZoCWgPQwhuFcRA1z7jv5SGlFKUaBVLMmgWR0CxBMPRJEpidX2UKGgGaAloD0MI6/8c5suL4b+UhpRSlGgVSzJoFkdAsQSX6Eal13V9lChoBmgJaA9DCEkvavergOS/lIaUUpRoFUsyaBZHQLEEa/IsAed1fZQoaAZoCWgPQwiIvOXqxybcv5SGlFKUaBVLMmgWR0CxBXnEIgNgdX2UKGgGaAloD0MIUn5S7dNx5b+UhpRSlGgVSzJoFkdAsQVNxEORT3V9lChoBmgJaA9DCB10CYfe4t6/lIaUUpRoFUsyaBZHQLEFIebd8At1fZQoaAZoCWgPQwi8r8qFyr/hv5SGlFKUaBVLMmgWR0CxBPYWP91mdX2UKGgGaAloD0MIgSOBBps64L+UhpRSlGgVSzJoFkdAsQYON4qwyXV9lChoBmgJaA9DCEqzeRwG89y/lIaUUpRoFUsyaBZHQLEF4hvze411fZQoaAZoCWgPQwiBzTl4JjTev5SGlFKUaBVLMmgWR0CxBbY2bXpXdX2UKGgGaAloD0MI2C5tOCwN2r+UhpRSlGgVSzJoFkdAsQWKSwGGEnV9lChoBmgJaA9DCFddh2pKMuO/lIaUUpRoFUsyaBZHQLEGlXSSeRR1fZQoaAZoCWgPQwjzBMJOserhv5SGlFKUaBVLMmgWR0CxBmltbcGkdX2UKGgGaAloD0MIwjQMHxFT5b+UhpRSlGgVSzJoFkdAsQY9i7TUiXV9lChoBmgJaA9DCJNX5xiQvda/lIaUUpRoFUsyaBZHQLEGEZ/Tb351fZQoaAZoCWgPQwiwWS4bnXPnv5SGlFKUaBVLMmgWR0CxBx79hqj8dX2UKGgGaAloD0MI3A2itaLN47+UhpRSlGgVSzJoFkdAsQby0Z3s5XV9lChoBmgJaA9DCDNRhNTtbOW/lIaUUpRoFUsyaBZHQLEGxuHerMl1fZQoaAZoCWgPQwgGuCBbli/iv5SGlFKUaBVLMmgWR0CxBpr0e2d/dX2UKGgGaAloD0MIiVxwBn+/4b+UhpRSlGgVSzJoFkdAsQelmyxA0XV9lChoBmgJaA9DCGggls0cEuC/lIaUUpRoFUsyaBZHQLEHec+aBqd1fZQoaAZoCWgPQwh+xK9Yw8Xkv5SGlFKUaBVLMmgWR0CxB04M4LkTdX2UKGgGaAloD0MIEce6uI0G47+UhpRSlGgVSzJoFkdAsQciHdoFmnV9lChoBmgJaA9DCHO7l/vkKOW/lIaUUpRoFUsyaBZHQLEILBxPwd91fZQoaAZoCWgPQwil2NE41O/ev5SGlFKUaBVLMmgWR0CxB//xMFlkdX2UKGgGaAloD0MIfJxpwvaT17+UhpRSlGgVSzJoFkdAsQfT/S6UaHV9lChoBmgJaA9DCCe8BKc+kOG/lIaUUpRoFUsyaBZHQLEHqAYpDu11fZQoaAZoCWgPQwhOnNzvUJTkv5SGlFKUaBVLMmgWR0CxCMHljmSydX2UKGgGaAloD0MIrfcb7bjh2b+UhpRSlGgVSzJoFkdAsQiWLaVUuXV9lChoBmgJaA9DCNNLjGX6Jeq/lIaUUpRoFUsyaBZHQLEIaq0dBB11fZQoaAZoCWgPQwgmGTkLe9rev5SGlFKUaBVLMmgWR0CxCD8v7FbWdX2UKGgGaAloD0MI5dAi2/l+2b+UhpRSlGgVSzJoFkdAsQlPy9VWCHV9lChoBmgJaA9DCEf/y7Vogei/lIaUUpRoFUsyaBZHQLEJI9GI9DB1fZQoaAZoCWgPQwiGdePdkbHev5SGlFKUaBVLMmgWR0CxCPfdRBNVdX2UKGgGaAloD0MI6gjgZvFi37+UhpRSlGgVSzJoFkdAsQjL5zo2XXV9lChoBmgJaA9DCEUsYthhTOC/lIaUUpRoFUsyaBZHQLEJ3oZhrnF1fZQoaAZoCWgPQwipUN1c/O3hv5SGlFKUaBVLMmgWR0CxCbJ8v24/dX2UKGgGaAloD0MIjLysiQW+5L+UhpRSlGgVSzJoFkdAsQmGsIVuaXV9lChoBmgJaA9DCKg3o+ar5N6/lIaUUpRoFUsyaBZHQLEJWschkiF1fZQoaAZoCWgPQwh1BduIJ7vfv5SGlFKUaBVLMmgWR0CxCm/JaJQ+dX2UKGgGaAloD0MIApoIG57e6L+UhpRSlGgVSzJoFkdAsQpELeANG3V9lChoBmgJaA9DCKFmSBXFq+C/lIaUUpRoFUsyaBZHQLEKGK7ZnL91fZQoaAZoCWgPQwiCOA8nMJ3hv5SGlFKUaBVLMmgWR0CxCe0gfU4JdX2UKGgGaAloD0MIYytoWmLl5r+UhpRSlGgVSzJoFkdAsQsOY4Qz13V9lChoBmgJaA9DCCI3ww34fOa/lIaUUpRoFUsyaBZHQLEK4pkwvg51fZQoaAZoCWgPQwiP/MHAc+/dv5SGlFKUaBVLMmgWR0CxCrbCm/FjdX2UKGgGaAloD0MIOUVHcvkP3r+UhpRSlGgVSzJoFkdAsQqK6bvw3HV9lChoBmgJaA9DCCLGa17V2eG/lIaUUpRoFUsyaBZHQLELnYUWVNZ1fZQoaAZoCWgPQwiFBmLZzKHkv5SGlFKUaBVLMmgWR0CxC3FnIyTIdX2UKGgGaAloD0MIIM8u3/ow6b+UhpRSlGgVSzJoFkdAsQtFedCmdnV9lChoBmgJaA9DCGkB2lazTuS/lIaUUpRoFUsyaBZHQLELGY2sJY11fZQoaAZoCWgPQwiz8PW1LjXjv5SGlFKUaBVLMmgWR0CxDC7zoUzsdX2UKGgGaAloD0MIgsr49xkX4b+UhpRSlGgVSzJoFkdAsQwC+JxecHV9lChoBmgJaA9DCC0+BcB4huK/lIaUUpRoFUsyaBZHQLEL1zdDYyx1fZQoaAZoCWgPQwinCHB6F+/Zv5SGlFKUaBVLMmgWR0CxC6tapxWDdX2UKGgGaAloD0MII0p7gy/M5L+UhpRSlGgVSzJoFkdAsQy5WU8mr3V9lChoBmgJaA9DCCybOSS1UN6/lIaUUpRoFUsyaBZHQLEMjTS9du51fZQoaAZoCWgPQwgDzHwHP3Hkv5SGlFKUaBVLMmgWR0CxDGFZgXuWdX2UKGgGaAloD0MIxVimXyJe4r+UhpRSlGgVSzJoFkdAsQw1aY/mknV9lChoBmgJaA9DCCIbSBebVui/lIaUUpRoFUsyaBZHQLENS7gKnel1fZQoaAZoCWgPQwjBWN/A5Ebcv5SGlFKUaBVLMmgWR0CxDR+tW+49dX2UKGgGaAloD0MIxooaTMPw47+UhpRSlGgVSzJoFkdAsQzzyRSxaHV9lChoBmgJaA9DCFYt6SgHs+a/lIaUUpRoFUsyaBZHQLEMx9eQdS51fZQoaAZoCWgPQwhagSGrWz3dv5SGlFKUaBVLMmgWR0CxDdXVCojwdX2UKGgGaAloD0MI9s/TgEHS3L+UhpRSlGgVSzJoFkdAsQ2ptoBaLXV9lChoBmgJaA9DCEHw+Pauwee/lIaUUpRoFUsyaBZHQLENfcY64lR1fZQoaAZoCWgPQwhWSWQfZNnov5SGlFKUaBVLMmgWR0CxDVHEETxodX2UKGgGaAloD0MIh2pKsg7H6L+UhpRSlGgVSzJoFkdAsQ56tjkMkXV9lChoBmgJaA9DCChGlsyxvOS/lIaUUpRoFUsyaBZHQLEOTwGW2PV1fZQoaAZoCWgPQwhflnZqLjfdv5SGlFKUaBVLMmgWR0CxDiN/J/5MdX2UKGgGaAloD0MItDo5Q3FH5b+UhpRSlGgVSzJoFkdAsQ34B0ZFX3V9lChoBmgJaA9DCOi9MQQAx9y/lIaUUpRoFUsyaBZHQLEPaNBWxQl1fZQoaAZoCWgPQwja4a/JGvXjv5SGlFKUaBVLMmgWR0CxDz0aqCHzdX2UKGgGaAloD0MI0VeQZiya27+UhpRSlGgVSzJoFkdAsQ8RkOI683V9lChoBmgJaA9DCIZVvJF5ZOq/lIaUUpRoFUsyaBZHQLEO5ilSCOF1ZS4="
|
81 |
},
|
82 |
"ep_success_buffer": {
|
83 |
":type:": "<class 'collections.deque'>",
|
a2c-PandaReachDense-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 44734
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f61831b632ef0e697b4addf2f618b6c2aa976b6a0edb52c5992db78ace261606
|
3 |
size 44734
|
a2c-PandaReachDense-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 46014
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:73077579bcf381e8ddeba6592733c20cbd0cf27481fedff1ed1ec314912f6fdf
|
3 |
size 46014
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f36c487df70>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f36c487f800>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 8, "num_timesteps": 3000000, "_total_timesteps": 3000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1679298857122970355, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVewIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolmAAAAAAAAAANpmOPnhTx7xTkRI/NpmOPnhTx7xTkRI/NpmOPnhTx7xTkRI/NpmOPnhTx7xTkRI/NpmOPnhTx7xTkRI/NpmOPnhTx7xTkRI/NpmOPnhTx7xTkRI/NpmOPnhTx7xTkRI/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksISwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcolmAAAAAAAAAAnzhPv5fZjD9T6Zc/2lSNP0D9QD5mBnM/d36hP826kL8NFLi+Hlm4v8j0gL++Npa/AebXvm/xVr55pc4+f0iSv1gHcT/eiYa+F1esPzpel78TnnU/qZ/6PjLy0L5UTk+/lGgOSwhLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWwAAAAAAAAAA2mY4+eFPHvFOREj89U9+7cN8Ou6cZmjs2mY4+eFPHvFOREj89U9+7cN8Ou6cZmjs2mY4+eFPHvFOREj89U9+7cN8Ou6cZmjs2mY4+eFPHvFOREj89U9+7cN8Ou6cZmjs2mY4+eFPHvFOREj89U9+7cN8Ou6cZmjs2mY4+eFPHvFOREj89U9+7cN8Ou6cZmjs2mY4+eFPHvFOREj89U9+7cN8Ou6cZmjs2mY4+eFPHvFOREj89U9+7cN8Ou6cZmjuUaA5LCEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.27851266 -0.02433179 0.57253 ]\n [ 0.27851266 -0.02433179 0.57253 ]\n [ 0.27851266 -0.02433179 0.57253 ]\n [ 0.27851266 -0.02433179 0.57253 ]\n [ 0.27851266 -0.02433179 0.57253 ]\n [ 0.27851266 -0.02433179 0.57253 ]\n [ 0.27851266 -0.02433179 0.57253 ]\n [ 0.27851266 -0.02433179 0.57253 ]]", "desired_goal": "[[-0.8094577 1.1003903 1.186808 ]\n [ 1.104152 0.18846607 0.9493164 ]\n [ 1.2616719 -1.1307007 -0.35952798]\n [-1.4402196 -1.0074701 -1.1735456 ]\n [-0.42167667 -0.20990537 0.4036062 ]\n [-1.1428374 0.9415183 -0.2627706 ]\n [ 1.3464078 -1.1825631 0.9594433 ]\n [ 0.48949936 -0.4080978 -0.80978894]]", "observation": "[[ 0.27851266 -0.02433179 0.57253 -0.00681534 -0.00218007 0.00470277]\n [ 0.27851266 -0.02433179 0.57253 -0.00681534 -0.00218007 0.00470277]\n [ 0.27851266 -0.02433179 0.57253 -0.00681534 -0.00218007 0.00470277]\n [ 0.27851266 -0.02433179 0.57253 -0.00681534 -0.00218007 0.00470277]\n [ 0.27851266 -0.02433179 0.57253 -0.00681534 -0.00218007 0.00470277]\n [ 0.27851266 -0.02433179 0.57253 -0.00681534 -0.00218007 0.00470277]\n [ 0.27851266 -0.02433179 0.57253 -0.00681534 -0.00218007 0.00470277]\n [ 0.27851266 -0.02433179 0.57253 -0.00681534 -0.00218007 0.00470277]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVewAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYIAAAAAAAAAAEBAQEBAQEBlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlC4="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVewIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolmAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksISwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcolmAAAAAAAAAAYS2dPWZc9j2iObI9nCUUvk9Eqb2D7Gs9fSj8PIAXNr0YTVM+K+xlvOCng701ICM+HiY4PBeoED67qxM+o19dPbit+Tw6vJ09zTrMPeAB4b1fSDA+XLLmPbyamz0KqVk+lGgOSwhLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWwAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LCEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.07674671 0.12029342 0.08702399]\n [-0.14467472 -0.08264982 0.0575986 ]\n [ 0.03078103 -0.04445601 0.20634878]\n [-0.01403336 -0.06428504 0.15930255]\n [ 0.01123956 0.14126621 0.14420979]\n [ 0.05404628 0.03047834 0.07701917]\n [ 0.09972153 -0.10986686 0.17215107]\n [ 0.11264488 0.07597873 0.2125589 ]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIxooaTMMAFMCUhpRSlIwBbJRLMowBdJRHQMD6iHVPN3Z1fZQoaAZoCWgPQwhT6LzGLpEMwJSGlFKUaBVLMmgWR0DA+narR0EHdX2UKGgGaAloD0MI6GZ/oNy2DcCUhpRSlGgVSzJoFkdAwPpikwevIXV9lChoBmgJaA9DCERuhhvwSRnAlIaUUpRoFUsyaBZHQMD6UiVbA1x1fZQoaAZoCWgPQwjQY5RnXv4XwJSGlFKUaBVLMmgWR0DA+2AZhrnDdX2UKGgGaAloD0MI/mK2ZFX0EcCUhpRSlGgVSzJoFkdAwPtC/VRUFXV9lChoBmgJaA9DCM2rOqsFxiDAlIaUUpRoFUsyaBZHQMD7KzhP0qZ1fZQoaAZoCWgPQwjxg/OpY5UTwJSGlFKUaBVLMmgWR0DA+wlSde6adX2UKGgGaAloD0MIAyfbwB3YG8CUhpRSlGgVSzJoFkdAwPr4GGmDUXV9lChoBmgJaA9DCIS7s3bb9RTAlIaUUpRoFUsyaBZHQMD65mWUr091fZQoaAZoCWgPQwins5PBUTIVwJSGlFKUaBVLMmgWR0DA+tJKg7HRdX2UKGgGaAloD0MIvDydK0oZFsCUhpRSlGgVSzJoFkdAwPrB3V09yXV9lChoBmgJaA9DCJHyk2qf1iLAlIaUUpRoFUsyaBZHQMD70y75Ec91fZQoaAZoCWgPQwgejNgngBIRwJSGlFKUaBVLMmgWR0DA+7X1nM+vdX2UKGgGaAloD0MIhCugUE8fGcCUhpRSlGgVSzJoFkdAwPueJCSid3V9lChoBmgJaA9DCCvaHOc2ERPAlIaUUpRoFUsyaBZHQMD7fDEm6Xl1fZQoaAZoCWgPQwgdke9S6hINwJSGlFKUaBVLMmgWR0DA+2sz0pVkdX2UKGgGaAloD0MILjvEP2xpGsCUhpRSlGgVSzJoFkdAwPtZhkRSP3V9lChoBmgJaA9DCKzlzkwwbBDAlIaUUpRoFUsyaBZHQMD7RWjoIOZ1fZQoaAZoCWgPQwiJQzaQLjYLwJSGlFKUaBVLMmgWR0DA+zT7uUlidX2UKGgGaAloD0MItyizQSaZD8CUhpRSlGgVSzJoFkdAwPxGggX/HnV9lChoBmgJaA9DCHQprir77hLAlIaUUpRoFUsyaBZHQMD8KS26TW51fZQoaAZoCWgPQwgG1QYnoo8RwJSGlFKUaBVLMmgWR0DA/BFZaFEidX2UKGgGaAloD0MIPQtCeR83E8CUhpRSlGgVSzJoFkdAwPvvY7JXAHV9lChoBmgJaA9DCHqp2JjXwRvAlIaUUpRoFUsyaBZHQMD73jE3sHB1fZQoaAZoCWgPQwgWFAZlGkUhwJSGlFKUaBVLMmgWR0DA+8xy6tkndX2UKGgGaAloD0MIP8iyYOLfFMCUhpRSlGgVSzJoFkdAwPu4Wa+ev3V9lChoBmgJaA9DCAVu3c1TzRfAlIaUUpRoFUsyaBZHQMD7p+o99tx1fZQoaAZoCWgPQwjBGfz9YjYQwJSGlFKUaBVLMmgWR0DA/L5IjGDMdX2UKGgGaAloD0MIe7/RjhsOEcCUhpRSlGgVSzJoFkdAwPyg9LYf4nV9lChoBmgJaA9DCHGQEOULihbAlIaUUpRoFUsyaBZHQMD8iT41xbV1fZQoaAZoCWgPQwi3mQrxSAwiwJSGlFKUaBVLMmgWR0DA/GdTgl4UdX2UKGgGaAloD0MI/YaJBilAIsCUhpRSlGgVSzJoFkdAwPxWFEAo5XV9lChoBmgJaA9DCKHbSxqjhRHAlIaUUpRoFUsyaBZHQMD8RG2kSEl1fZQoaAZoCWgPQwgb9KW3PwccwJSGlFKUaBVLMmgWR0DA/DBMURFrdX2UKGgGaAloD0MIn8vUJHijJMCUhpRSlGgVSzJoFkdAwPwf3RG+bnV9lChoBmgJaA9DCJT3cTRH1hDAlIaUUpRoFUsyaBZHQMD9NEmQbMp1fZQoaAZoCWgPQwgP0765v2oUwJSGlFKUaBVLMmgWR0DA/RcsBhhIdX2UKGgGaAloD0MIqWdBKO8jJMCUhpRSlGgVSzJoFkdAwPz/XQMQVnV9lChoBmgJaA9DCIVefxKfaxDAlIaUUpRoFUsyaBZHQMD83XO4XoF1fZQoaAZoCWgPQwgfaXBbW3gQwJSGlFKUaBVLMmgWR0DA/Mw7gbZOdX2UKGgGaAloD0MIkIKnkCtFGsCUhpRSlGgVSzJoFkdAwPy6bzbvgHV9lChoBmgJaA9DCEzdlV0waBXAlIaUUpRoFUsyaBZHQMD8plUIcBF1fZQoaAZoCWgPQwgg1bDfE6sQwJSGlFKUaBVLMmgWR0DA/JXtUn5SdX2UKGgGaAloD0MIj2/vGvQVEMCUhpRSlGgVSzJoFkdAwP2lOhTOxHV9lChoBmgJaA9DCO1l22lrJBfAlIaUUpRoFUsyaBZHQMD9h/cN6Pd1fZQoaAZoCWgPQwiUFFgAU/YVwJSGlFKUaBVLMmgWR0DA/XApe/pMdX2UKGgGaAloD0MIRIoBEk1gHsCUhpRSlGgVSzJoFkdAwP1OPn0TUXV9lChoBmgJaA9DCLTpCOBmcRTAlIaUUpRoFUsyaBZHQMD9PP9DQZ51fZQoaAZoCWgPQwheTDPd6wQPwJSGlFKUaBVLMmgWR0DA/Ssy8BdVdX2UKGgGaAloD0MIA5ZcxeJ3HMCUhpRSlGgVSzJoFkdAwP0XNATqS3V9lChoBmgJaA9DCFOvWwTGih/AlIaUUpRoFUsyaBZHQMD9Bscp9Z11fZQoaAZoCWgPQwjnxvSEJd4cwJSGlFKUaBVLMmgWR0DA/hmZXuE3dX2UKGgGaAloD0MIsRpLWBtTE8CUhpRSlGgVSzJoFkdAwP38R02ca3V9lChoBmgJaA9DCOBnXDgQaiHAlIaUUpRoFUsyaBZHQMD95I+Ofd11fZQoaAZoCWgPQwhFZ5lFKNYdwJSGlFKUaBVLMmgWR0DA/cLA57w8dX2UKGgGaAloD0MIXD0nvW/MF8CUhpRSlGgVSzJoFkdAwP2xhiLEUHV9lChoBmgJaA9DCGnk84qnfg7AlIaUUpRoFUsyaBZHQMD9n9+gDih1fZQoaAZoCWgPQwh3MGKfAOolwJSGlFKUaBVLMmgWR0DA/YvHT7VKdX2UKGgGaAloD0MITUpBt5dkFMCUhpRSlGgVSzJoFkdAwP17UOuq3nV9lChoBmgJaA9DCGk50ENtcyjAlIaUUpRoFUsyaBZHQMD+j4FzMid1fZQoaAZoCWgPQwiafR6jPHsiwJSGlFKUaBVLMmgWR0DA/nI4hllLdX2UKGgGaAloD0MIEqPnFrpSI8CUhpRSlGgVSzJoFkdAwP5abp/wzHV9lChoBmgJaA9DCELtt3aiFBjAlIaUUpRoFUsyaBZHQMD+OIE0SAZ1fZQoaAZoCWgPQwgexM4UOt8ewJSGlFKUaBVLMmgWR0DA/idJ17pndX2UKGgGaAloD0MIXKyowTS8IsCUhpRSlGgVSzJoFkdAwP4Vj1f3OHV9lChoBmgJaA9DCJ1kq8spYQvAlIaUUpRoFUsyaBZHQMD+AXlbNbF1fZQoaAZoCWgPQwhpVrYPeesXwJSGlFKUaBVLMmgWR0DA/fEDp1RtdX2UKGgGaAloD0MILXjRV5C2EMCUhpRSlGgVSzJoFkdAwP8VuG9HtnV9lChoBmgJaA9DCKBTkJ+NXA3AlIaUUpRoFUsyaBZHQMD++MXJo011fZQoaAZoCWgPQwgDIy9rYsEfwJSGlFKUaBVLMmgWR0DA/uEeIVM3dX2UKGgGaAloD0MI6BGj5xbKEcCUhpRSlGgVSzJoFkdAwP6/UrCm/HV9lChoBmgJaA9DCOCik6XWaxjAlIaUUpRoFUsyaBZHQMD+rjyOJch1fZQoaAZoCWgPQwha8+MvLUoSwJSGlFKUaBVLMmgWR0DA/pyyOaOQdX2UKGgGaAloD0MIyT1d3bHIEsCUhpRSlGgVSzJoFkdAwP6JOvdM03V9lChoBmgJaA9DCGa/7nTn2RzAlIaUUpRoFUsyaBZHQMD+eTfixV11fZQoaAZoCWgPQwgjZvZ5jIIUwJSGlFKUaBVLMmgWR0DA/9UTtb9qdX2UKGgGaAloD0MICMkCJnCrDsCUhpRSlGgVSzJoFkdAwP+37Qb++HV9lChoBmgJaA9DCLaizXFusyHAlIaUUpRoFUsyaBZHQMD/oEzXSSh1fZQoaAZoCWgPQwgZrDjVWlgQwJSGlFKUaBVLMmgWR0DA/37NOdoWdX2UKGgGaAloD0MI9OFZgozADcCUhpRSlGgVSzJoFkdAwP9tv0AcUHV9lChoBmgJaA9DCHmRCfg1Eh/AlIaUUpRoFUsyaBZHQMD/XER8MNN1fZQoaAZoCWgPQwjnpzgOvIofwJSGlFKUaBVLMmgWR0DA/0jZezD5dX2UKGgGaAloD0MIjiJrDaU2C8CUhpRSlGgVSzJoFkdAwP84s4DLbHV9lChoBmgJaA9DCDBLOzWXWyDAlIaUUpRoFUsyaBZHQMEAqG1IAfd1fZQoaAZoCWgPQwhENSVZh6MewJSGlFKUaBVLMmgWR0DBAIt94NZvdX2UKGgGaAloD0MIGXPXEvLRHcCUhpRSlGgVSzJoFkdAwQBz4mCyyHV9lChoBmgJaA9DCHv0hvvIbQ/AlIaUUpRoFUsyaBZHQMEAUmdqcmV1fZQoaAZoCWgPQwgukQvO4N8QwJSGlFKUaBVLMmgWR0DBAEG5xzaLdX2UKGgGaAloD0MIk+UklL4IIMCUhpRSlGgVSzJoFkdAwQAwJv5xi3V9lChoBmgJaA9DCHnpJjEIDA/AlIaUUpRoFUsyaBZHQMEAHGax5cF1fZQoaAZoCWgPQwjFVtC0xGoiwJSGlFKUaBVLMmgWR0DBAAwyKvV3dX2UKGgGaAloD0MI21Axzt+0EcCUhpRSlGgVSzJoFkdAwQF2RwqAjXV9lChoBmgJaA9DCOP9uP3yyQ/AlIaUUpRoFUsyaBZHQMEBWYNI9Tx1fZQoaAZoCWgPQwgwgsZMoi4UwJSGlFKUaBVLMmgWR0DBAUHlhgE2dX2UKGgGaAloD0MIlj/fFixFEMCUhpRSlGgVSzJoFkdAwQEgIrvsq3V9lChoBmgJaA9DCMOayqKw8yHAlIaUUpRoFUsyaBZHQMEBD4oy9El1fZQoaAZoCWgPQwjiPnJr0q0VwJSGlFKUaBVLMmgWR0DBAP3u1F6SdX2UKGgGaAloD0MIf93pzhOvHcCUhpRSlGgVSzJoFkdAwQDqAAhjfHV9lChoBmgJaA9DCAWiJ2VSQxPAlIaUUpRoFUsyaBZHQMEA2eR5kbx1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 75000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7efc8e8d98b0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7efc8e8db540>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1500000, "_total_timesteps": 1500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1679331351783659202, "learning_rate": 0.0001, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/Gjbi6xxDLYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAl2OxPt4WTzu0jQc/l2OxPt4WTzu0jQc/l2OxPt4WTzu0jQc/l2OxPt4WTzu0jQc/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA6rhEP5r7MT9YQIy/WyPbv2Q2Rj69ofY+Vpguv5HhaD+XtEa/11dnPlcsoD73C6+/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACXY7E+3hZPO7SNBz9LNyC8Fkk8uiW5wzqXY7E+3hZPO7SNBz9LNyC8Fkk8uiW5wzqXY7E+3hZPO7SNBz9LNyC8Fkk8uiW5wzqXY7E+3hZPO7SNBz9LNyC8Fkk8uiW5wzqUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.34646294 0.00315993 0.52950597]\n [0.34646294 0.00315993 0.52950597]\n [0.34646294 0.00315993 0.52950597]\n [0.34646294 0.00315993 0.52950597]]", "desired_goal": "[[ 0.76844656 0.6952454 -1.0957136 ]\n [-1.7120165 0.19356686 0.48170272]\n [-0.68201196 0.9096919 -0.7761931 ]\n [ 0.22592102 0.3128383 -1.3675526 ]]", "observation": "[[ 0.34646294 0.00315993 0.52950597 -0.00977881 -0.00071825 0.00149325]\n [ 0.34646294 0.00315993 0.52950597 -0.00977881 -0.00071825 0.00149325]\n [ 0.34646294 0.00315993 0.52950597 -0.00977881 -0.00071825 0.00149325]\n [ 0.34646294 0.00315993 0.52950597 -0.00977881 -0.00071825 0.00149325]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAYHvcvTotV7uhgF8+pVhyvA+rir0cg2A9pCEFPs1nzL3Ev5Y+Bxn8vdU3B75MBm4+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.10765719 -0.00328334 0.21826412]\n [-0.01479164 -0.06770908 0.05481254]\n [ 0.13001114 -0.09980736 0.2944318 ]\n [-0.12309461 -0.13204892 0.2324459 ]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIcJhokIKn37+UhpRSlIwBbJRLMowBdJRHQLD/xS619fF1fZQoaAZoCWgPQwgVjErqBDTev5SGlFKUaBVLMmgWR0Cw/5lyNn5BdX2UKGgGaAloD0MIGr/wSpLn6L+UhpRSlGgVSzJoFkdAsP9ul54W13V9lChoBmgJaA9DCP28qUiFsem/lIaUUpRoFUsyaBZHQLD/Q0jTrmh1fZQoaAZoCWgPQwhO0vwxrc3iv5SGlFKUaBVLMmgWR0CxAKYwIt17dX2UKGgGaAloD0MIk1M7w9SW4b+UhpRSlGgVSzJoFkdAsQB6iM5wO3V9lChoBmgJaA9DCNRkxttKr+K/lIaUUpRoFUsyaBZHQLEATy1eBxx1fZQoaAZoCWgPQwicqKW5FcLnv5SGlFKUaBVLMmgWR0CxACOSfUWmdX2UKGgGaAloD0MIINPaNLbX4L+UhpRSlGgVSzJoFkdAsQGZKdxyXHV9lChoBmgJaA9DCHf2lQfpKeO/lIaUUpRoFUsyaBZHQLEBbcclw991fZQoaAZoCWgPQwgs1JrmHafmv5SGlFKUaBVLMmgWR0CxAUKP0Zm7dX2UKGgGaAloD0MIda4oJQQr5r+UhpRSlGgVSzJoFkdAsQEXYwqRU3V9lChoBmgJaA9DCDYDXJAty+C/lIaUUpRoFUsyaBZHQLEClrIo3Jh1fZQoaAZoCWgPQwhC6KBLOPThv5SGlFKUaBVLMmgWR0CxAmsf7rLRdX2UKGgGaAloD0MIVaLsLeV82b+UhpRSlGgVSzJoFkdAsQI/ocJdB3V9lChoBmgJaA9DCJULlX8tL+K/lIaUUpRoFUsyaBZHQLECFHKwIMV1fZQoaAZoCWgPQwjexmZHqm/mv5SGlFKUaBVLMmgWR0CxA4aMefZmdX2UKGgGaAloD0MIym5m9KNh4b+UhpRSlGgVSzJoFkdAsQNazJIUanV9lChoBmgJaA9DCFVQUfUrneG/lIaUUpRoFUsyaBZHQLEDL1SOzY51fZQoaAZoCWgPQwiRe7q6YzHkv5SGlFKUaBVLMmgWR0CxAwPpljEvdX2UKGgGaAloD0MIRN5y9WOT5b+UhpRSlGgVSzJoFkdAsQRmePJaJXV9lChoBmgJaA9DCFsLs9DOaeC/lIaUUpRoFUsyaBZHQLEEOmqo60Z1fZQoaAZoCWgPQwihoupXOh/ev5SGlFKUaBVLMmgWR0CxBA6EOAiFdX2UKGgGaAloD0MILNfbZirE6L+UhpRSlGgVSzJoFkdAsQPikdmxuHV9lChoBmgJaA9DCDjb3JiesN6/lIaUUpRoFUsyaBZHQLEE7+kP+XJ1fZQoaAZoCWgPQwhuFcRA1z7jv5SGlFKUaBVLMmgWR0CxBMPRJEpidX2UKGgGaAloD0MI6/8c5suL4b+UhpRSlGgVSzJoFkdAsQSX6Eal13V9lChoBmgJaA9DCEkvavergOS/lIaUUpRoFUsyaBZHQLEEa/IsAed1fZQoaAZoCWgPQwiIvOXqxybcv5SGlFKUaBVLMmgWR0CxBXnEIgNgdX2UKGgGaAloD0MIUn5S7dNx5b+UhpRSlGgVSzJoFkdAsQVNxEORT3V9lChoBmgJaA9DCB10CYfe4t6/lIaUUpRoFUsyaBZHQLEFIebd8At1fZQoaAZoCWgPQwi8r8qFyr/hv5SGlFKUaBVLMmgWR0CxBPYWP91mdX2UKGgGaAloD0MIgSOBBps64L+UhpRSlGgVSzJoFkdAsQYON4qwyXV9lChoBmgJaA9DCEqzeRwG89y/lIaUUpRoFUsyaBZHQLEF4hvze411fZQoaAZoCWgPQwiBzTl4JjTev5SGlFKUaBVLMmgWR0CxBbY2bXpXdX2UKGgGaAloD0MI2C5tOCwN2r+UhpRSlGgVSzJoFkdAsQWKSwGGEnV9lChoBmgJaA9DCFddh2pKMuO/lIaUUpRoFUsyaBZHQLEGlXSSeRR1fZQoaAZoCWgPQwjzBMJOserhv5SGlFKUaBVLMmgWR0CxBmltbcGkdX2UKGgGaAloD0MIwjQMHxFT5b+UhpRSlGgVSzJoFkdAsQY9i7TUiXV9lChoBmgJaA9DCJNX5xiQvda/lIaUUpRoFUsyaBZHQLEGEZ/Tb351fZQoaAZoCWgPQwiwWS4bnXPnv5SGlFKUaBVLMmgWR0CxBx79hqj8dX2UKGgGaAloD0MI3A2itaLN47+UhpRSlGgVSzJoFkdAsQby0Z3s5XV9lChoBmgJaA9DCDNRhNTtbOW/lIaUUpRoFUsyaBZHQLEGxuHerMl1fZQoaAZoCWgPQwgGuCBbli/iv5SGlFKUaBVLMmgWR0CxBpr0e2d/dX2UKGgGaAloD0MIiVxwBn+/4b+UhpRSlGgVSzJoFkdAsQelmyxA0XV9lChoBmgJaA9DCGggls0cEuC/lIaUUpRoFUsyaBZHQLEHec+aBqd1fZQoaAZoCWgPQwh+xK9Yw8Xkv5SGlFKUaBVLMmgWR0CxB04M4LkTdX2UKGgGaAloD0MIEce6uI0G47+UhpRSlGgVSzJoFkdAsQciHdoFmnV9lChoBmgJaA9DCHO7l/vkKOW/lIaUUpRoFUsyaBZHQLEILBxPwd91fZQoaAZoCWgPQwil2NE41O/ev5SGlFKUaBVLMmgWR0CxB//xMFlkdX2UKGgGaAloD0MIfJxpwvaT17+UhpRSlGgVSzJoFkdAsQfT/S6UaHV9lChoBmgJaA9DCCe8BKc+kOG/lIaUUpRoFUsyaBZHQLEHqAYpDu11fZQoaAZoCWgPQwhOnNzvUJTkv5SGlFKUaBVLMmgWR0CxCMHljmSydX2UKGgGaAloD0MIrfcb7bjh2b+UhpRSlGgVSzJoFkdAsQiWLaVUuXV9lChoBmgJaA9DCNNLjGX6Jeq/lIaUUpRoFUsyaBZHQLEIaq0dBB11fZQoaAZoCWgPQwgmGTkLe9rev5SGlFKUaBVLMmgWR0CxCD8v7FbWdX2UKGgGaAloD0MI5dAi2/l+2b+UhpRSlGgVSzJoFkdAsQlPy9VWCHV9lChoBmgJaA9DCEf/y7Vogei/lIaUUpRoFUsyaBZHQLEJI9GI9DB1fZQoaAZoCWgPQwiGdePdkbHev5SGlFKUaBVLMmgWR0CxCPfdRBNVdX2UKGgGaAloD0MI6gjgZvFi37+UhpRSlGgVSzJoFkdAsQjL5zo2XXV9lChoBmgJaA9DCEUsYthhTOC/lIaUUpRoFUsyaBZHQLEJ3oZhrnF1fZQoaAZoCWgPQwipUN1c/O3hv5SGlFKUaBVLMmgWR0CxCbJ8v24/dX2UKGgGaAloD0MIjLysiQW+5L+UhpRSlGgVSzJoFkdAsQmGsIVuaXV9lChoBmgJaA9DCKg3o+ar5N6/lIaUUpRoFUsyaBZHQLEJWschkiF1fZQoaAZoCWgPQwh1BduIJ7vfv5SGlFKUaBVLMmgWR0CxCm/JaJQ+dX2UKGgGaAloD0MIApoIG57e6L+UhpRSlGgVSzJoFkdAsQpELeANG3V9lChoBmgJaA9DCKFmSBXFq+C/lIaUUpRoFUsyaBZHQLEKGK7ZnL91fZQoaAZoCWgPQwiCOA8nMJ3hv5SGlFKUaBVLMmgWR0CxCe0gfU4JdX2UKGgGaAloD0MIYytoWmLl5r+UhpRSlGgVSzJoFkdAsQsOY4Qz13V9lChoBmgJaA9DCCI3ww34fOa/lIaUUpRoFUsyaBZHQLEK4pkwvg51fZQoaAZoCWgPQwiP/MHAc+/dv5SGlFKUaBVLMmgWR0CxCrbCm/FjdX2UKGgGaAloD0MIOUVHcvkP3r+UhpRSlGgVSzJoFkdAsQqK6bvw3HV9lChoBmgJaA9DCCLGa17V2eG/lIaUUpRoFUsyaBZHQLELnYUWVNZ1fZQoaAZoCWgPQwiFBmLZzKHkv5SGlFKUaBVLMmgWR0CxC3FnIyTIdX2UKGgGaAloD0MIIM8u3/ow6b+UhpRSlGgVSzJoFkdAsQtFedCmdnV9lChoBmgJaA9DCGkB2lazTuS/lIaUUpRoFUsyaBZHQLELGY2sJY11fZQoaAZoCWgPQwiz8PW1LjXjv5SGlFKUaBVLMmgWR0CxDC7zoUzsdX2UKGgGaAloD0MIgsr49xkX4b+UhpRSlGgVSzJoFkdAsQwC+JxecHV9lChoBmgJaA9DCC0+BcB4huK/lIaUUpRoFUsyaBZHQLEL1zdDYyx1fZQoaAZoCWgPQwinCHB6F+/Zv5SGlFKUaBVLMmgWR0CxC6tapxWDdX2UKGgGaAloD0MII0p7gy/M5L+UhpRSlGgVSzJoFkdAsQy5WU8mr3V9lChoBmgJaA9DCCybOSS1UN6/lIaUUpRoFUsyaBZHQLEMjTS9du51fZQoaAZoCWgPQwgDzHwHP3Hkv5SGlFKUaBVLMmgWR0CxDGFZgXuWdX2UKGgGaAloD0MIxVimXyJe4r+UhpRSlGgVSzJoFkdAsQw1aY/mknV9lChoBmgJaA9DCCIbSBebVui/lIaUUpRoFUsyaBZHQLENS7gKnel1fZQoaAZoCWgPQwjBWN/A5Ebcv5SGlFKUaBVLMmgWR0CxDR+tW+49dX2UKGgGaAloD0MIxooaTMPw47+UhpRSlGgVSzJoFkdAsQzzyRSxaHV9lChoBmgJaA9DCFYt6SgHs+a/lIaUUpRoFUsyaBZHQLEMx9eQdS51fZQoaAZoCWgPQwhagSGrWz3dv5SGlFKUaBVLMmgWR0CxDdXVCojwdX2UKGgGaAloD0MI9s/TgEHS3L+UhpRSlGgVSzJoFkdAsQ2ptoBaLXV9lChoBmgJaA9DCEHw+Pauwee/lIaUUpRoFUsyaBZHQLENfcY64lR1fZQoaAZoCWgPQwhWSWQfZNnov5SGlFKUaBVLMmgWR0CxDVHEETxodX2UKGgGaAloD0MIh2pKsg7H6L+UhpRSlGgVSzJoFkdAsQ56tjkMkXV9lChoBmgJaA9DCChGlsyxvOS/lIaUUpRoFUsyaBZHQLEOTwGW2PV1fZQoaAZoCWgPQwhflnZqLjfdv5SGlFKUaBVLMmgWR0CxDiN/J/5MdX2UKGgGaAloD0MItDo5Q3FH5b+UhpRSlGgVSzJoFkdAsQ34B0ZFX3V9lChoBmgJaA9DCOi9MQQAx9y/lIaUUpRoFUsyaBZHQLEPaNBWxQl1fZQoaAZoCWgPQwja4a/JGvXjv5SGlFKUaBVLMmgWR0CxDz0aqCHzdX2UKGgGaAloD0MI0VeQZiya27+UhpRSlGgVSzJoFkdAsQ8RkOI683V9lChoBmgJaA9DCIZVvJF5ZOq/lIaUUpRoFUsyaBZHQLEO5ilSCOF1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 75000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward": -
|
|
|
1 |
+
{"mean_reward": -0.37088804729282854, "std_reward": 0.1333724252711934, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-20T18:17:52.495628"}
|
vec_normalize.pkl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 3056
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ac82168598fd7d17e89bba0353ea502252d975ea341b67adad604eea171fa77d
|
3 |
size 3056
|