--- datasets: - wikitext-2-v1 - yizhongw/self_instruct language: - en library_name: transformers metrics: crossentropy --- 1. download the pth file 2. load the state dict ```python from transformers import T5Tokenizer from transformers.models.llama import LlamaConfig config = LlamaConfig.from_pretrained(f"hpcaitech/openmoe-base") model = OpenMoeForCausalLM(config) ckpt = torch.load("openmoe_base_yizhongw_super_natural_instruction_generation.pth") state_dict = {} for key, value in ckpt.items(): if key.startswith("module."): state_dict[key[7:]] = value else: state_dict[key] = value model.load_state_dict(state_dict) ```