File size: 2,203 Bytes
555e103
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
from time import time

import torch
import torch.nn.functional as F
from torchvision.transforms import ToPILImage

from dldemos.VAE.load_celebA import get_dataloader
from dldemos.VAE.model import VAE

# Hyperparameters
n_epochs = 10
kl_weight = 0.00025
lr = 0.005


def loss_fn(y, y_hat, mean, logvar):
    recons_loss = F.mse_loss(y_hat, y)
    kl_loss = torch.mean(
        -0.5 * torch.sum(1 + logvar - mean**2 - torch.exp(logvar), 1), 0)
    loss = recons_loss + kl_loss * kl_weight
    return loss


def train(device, dataloader, model):
    optimizer = torch.optim.Adam(model.parameters(), lr)
    dataset_len = len(dataloader.dataset)

    begin_time = time()
    # train
    for i in range(n_epochs):
        loss_sum = 0
        for x in dataloader:
            x = x.to(device)
            y_hat, mean, logvar = model(x)
            loss = loss_fn(x, y_hat, mean, logvar)
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()
            loss_sum += loss
        loss_sum /= dataset_len
        training_time = time() - begin_time
        minute = int(training_time // 60)
        second = int(training_time % 60)
        print(f'epoch {i}: loss {loss_sum} {minute}:{second}')
        torch.save(model.state_dict(), 'dldemos/VAE/model.pth')


def reconstruct(device, dataloader, model):
    model.eval()
    batch = next(iter(dataloader))
    x = batch[0:1, ...].to(device)
    output = model(x)[0]
    output = output[0].detach().cpu()
    input = batch[0].detach().cpu()
    combined = torch.cat((output, input), 1)
    img = ToPILImage()(combined)
    img.save('work_dirs/tmp.jpg')


def generate(device, model):
    model.eval()
    output = model.sample(device)
    output = output[0].detach().cpu()
    img = ToPILImage()(output)
    img.save('work_dirs/tmp.jpg')


def main():
    device = 'cuda:0'
    dataloader = get_dataloader()

    model = VAE().to(device)

    # If you obtain the ckpt, load it
    model.load_state_dict(torch.load('dldemos/VAE/model.pth', 'cuda:0'))

    # Choose the function
    train(device, dataloader, model)
    reconstruct(device, dataloader, model)
    generate(device, model)


if __name__ == '__main__':
    main()