File size: 7,081 Bytes
ad4ad9f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
2023-11-20 14:42:19,407 INFO [inference_audio_tagging.py:290] Evaluation started
2023-11-20 14:42:19,407 INFO [inference_audio_tagging.py:292] {'best_train_loss': inf, 'best_valid_loss': inf, 'best_train_epoch': -1, 'best_valid_epoch': -1, 'batch_idx_train': 0, 'log_interval': 50, 'reset_interval': 200, 'valid_interval': 3000, 'feature_dim': 80, 'subsampling_factor': 4, 'warm_step': 2000, 'env_info': {'k2-version': '1.24.3', 'k2-build-type': 'Release', 'k2-with-cuda': True, 'k2-git-sha1': '2b2ac14b326d61d79d04e53fbd69b1ff6d630411', 'k2-git-date': 'Thu Aug 24 05:58:26 2023', 'lhotse-version': '1.16.0', 'torch-version': '2.0.1+cu117', 'torch-cuda-available': True, 'torch-cuda-version': '11.7', 'python-version': '3.1', 'icefall-git-branch': 'multi_KD', 'icefall-git-sha1': '16e77b48-dirty', 'icefall-git-date': 'Mon Nov 20 11:32:19 2023', 'icefall-path': '/star-xy/softwares/icefall_development/icefall_multi_KD', 'k2-path': '/star-xy/softwares/k2_development/k2/k2/python/k2/__init__.py', 'lhotse-path': '/star-xy/softwares/anaconda3/envs/multi_KD/lib/python3.10/site-packages/lhotse/__init__.py', 'hostname': 'de-74279-k2-train-3-1113160742-54db7c987c-xsw9k', 'IP address': '10.177.57.20'}, 'epoch': 14, 'iter': 0, 'avg': 1, 'use_averaged_model': True, 'exp_dir': PosixPath('multi_KD/exp_train_asr_full_libri1_do_audio_tagging1_as_unbalanced_scale1.0'), 'trained_with_distillation': False, 'trained_with_multitask': True, 'freeze_encoder': False, 'num_events': 527, 'vocab_size': 500, 'blank_id': 0, 'context_size': 2, 'do_audio_tagging': True, 'use_encoder_projection': False, 'encoder_projection_dim': -1, 'freezing_encoder_layer_index': '-1', 'freeze_encoder_steps': -1, 'num_encoder_layers': '2,2,3,4,3,2', 'downsampling_factor': '1,2,4,8,4,2', 'feedforward_dim': '512,768,1024,1536,1024,768', 'num_heads': '4,4,4,8,4,4', 'encoder_dim': '192,256,384,512,384,256', 'query_head_dim': '32', 'value_head_dim': '12', 'pos_head_dim': '4', 'pos_dim': 48, 'encoder_unmasked_dim': '192,192,256,256,256,192', 'cnn_module_kernel': '31,31,15,15,15,31', 'decoder_dim': 512, 'joiner_dim': 512, 'causal': False, 'chunk_size': '16,32,64,-1', 'left_context_frames': '64,128,256,-1', 'use_transducer': True, 'use_ctc': False, 'speaker_input_idx': 2, 'whisper_dim': 768, 'num_codebooks': 32, 'mvq_kd_layer_idx': -1, 'use_subsampled_output': True, 'full_libri': True, 'mini_libri': False, 'use_vox2': False, 'use_libriheavy': False, 'libriheavy_subset': 'small', 'use_audioset': False, 'audioset_subset': 'balanced', 'manifest_dir': PosixPath('data/fbank'), 'max_duration': 500, 'bucketing_sampler': True, 'num_buckets': 30, 'concatenate_cuts': False, 'duration_factor': 1.0, 'gap': 1.0, 'on_the_fly_feats': False, 'shuffle': True, 'drop_last': True, 'return_cuts': True, 'num_workers': 2, 'enable_spec_aug': True, 'spec_aug_time_warp_factor': 80, 'enable_musan': True, 'enable_audioset': False, 'use_musan_separately': False, 'input_strategy': 'PrecomputedFeatures', 'drop_features': False, 'return_audio': False, 'use_beats': True, 'use_ecapa': False, 'use_whisper': False, 'whisper_mvq': False, 'beats_ckpt': 'data/models/BEATs/BEATs_iter3_plus_AS2M_finetuned_on_AS2M_cpt2.pt', 'whisper_version': 'small.en', 'lm_vocab_size': 500, 'lm_epoch': 7, 'lm_avg': 1, 'lm_exp_dir': None, 'rnn_lm_embedding_dim': 2048, 'rnn_lm_hidden_dim': 2048, 'rnn_lm_num_layers': 3, 'rnn_lm_tie_weights': True, 'transformer_lm_exp_dir': None, 'transformer_lm_dim_feedforward': 2048, 'transformer_lm_encoder_dim': 768, 'transformer_lm_embedding_dim': 768, 'transformer_lm_nhead': 8, 'transformer_lm_num_layers': 16, 'transformer_lm_tie_weights': True, 'res_dir': PosixPath('multi_KD/exp_train_asr_full_libri1_do_audio_tagging1_as_unbalanced_scale1.0/inference_audio_tagging'), 'suffix': 'epoch-14-avg-1-use-averaged-model'}
2023-11-20 14:42:19,407 INFO [inference_audio_tagging.py:298] About to create model
2023-11-20 14:42:19,978 INFO [inference_audio_tagging.py:376] Calculating the averaged model over epoch range from 13 (excluded) to 14
2023-11-20 14:42:26,889 INFO [inference_audio_tagging.py:394] Number of model parameters: 65819362
2023-11-20 14:42:26,889 INFO [kd_datamodule.py:808] About to get the audioset eval cuts.
2023-11-20 14:42:26,908 INFO [kd_datamodule.py:529] About to create dev dataset
2023-11-20 14:42:27,429 INFO [kd_datamodule.py:550] About to create dev dataloader
2023-11-20 14:42:32,214 INFO [inference_audio_tagging.py:263] Processed 100 cuts already.
2023-11-20 14:42:36,646 INFO [inference_audio_tagging.py:263] Processed 1100 cuts already.
2023-11-20 14:42:36,735 INFO [zipformer.py:1873] name=None, attn_weights_entropy = tensor([5.3299, 5.0128, 4.7449, 5.1663], device='cuda:0')
2023-11-20 14:42:40,579 INFO [inference_audio_tagging.py:263] Processed 2101 cuts already.
2023-11-20 14:42:44,506 INFO [inference_audio_tagging.py:263] Processed 3101 cuts already.
2023-11-20 14:42:48,940 INFO [inference_audio_tagging.py:263] Processed 4101 cuts already.
2023-11-20 14:42:49,858 INFO [zipformer.py:1873] name=None, attn_weights_entropy = tensor([4.1878, 4.0670, 4.4135, 4.3715], device='cuda:0')
2023-11-20 14:42:53,067 INFO [inference_audio_tagging.py:263] Processed 5101 cuts already.
2023-11-20 14:42:56,942 INFO [inference_audio_tagging.py:263] Processed 6101 cuts already.
2023-11-20 14:42:59,323 INFO [zipformer.py:1873] name=None, attn_weights_entropy = tensor([5.3420, 5.0033, 4.7214, 5.1272], device='cuda:0')
2023-11-20 14:43:01,203 INFO [inference_audio_tagging.py:263] Processed 7101 cuts already.
2023-11-20 14:43:05,038 INFO [inference_audio_tagging.py:263] Processed 8101 cuts already.
2023-11-20 14:43:08,822 INFO [inference_audio_tagging.py:263] Processed 9101 cuts already.
2023-11-20 14:43:12,639 INFO [inference_audio_tagging.py:263] Processed 10101 cuts already.
2023-11-20 14:43:16,512 INFO [inference_audio_tagging.py:263] Processed 11101 cuts already.
2023-11-20 14:43:16,899 INFO [zipformer.py:1873] name=None, attn_weights_entropy = tensor([5.1678, 2.3419, 4.9480, 2.5735], device='cuda:0')
2023-11-20 14:43:18,604 INFO [zipformer.py:1873] name=None, attn_weights_entropy = tensor([2.6231, 4.1438, 3.7325, 3.1272], device='cuda:0')
2023-11-20 14:43:20,742 INFO [inference_audio_tagging.py:263] Processed 12101 cuts already.
2023-11-20 14:43:23,363 INFO [zipformer.py:1873] name=None, attn_weights_entropy = tensor([5.3395, 5.0248, 4.7544, 5.1723], device='cuda:0')
2023-11-20 14:43:24,666 INFO [inference_audio_tagging.py:263] Processed 13101 cuts already.
2023-11-20 14:43:28,456 INFO [inference_audio_tagging.py:263] Processed 14101 cuts already.
2023-11-20 14:43:31,829 INFO [zipformer.py:1873] name=None, attn_weights_entropy = tensor([4.5280, 3.7994, 4.3663, 3.3763], device='cuda:0')
2023-11-20 14:43:32,456 INFO [inference_audio_tagging.py:263] Processed 15101 cuts already.
2023-11-20 14:43:32,922 INFO [inference_audio_tagging.py:264] Finish collecting audio logits
2023-11-20 14:43:35,573 INFO [inference_audio_tagging.py:419] mAP for audioset eval is: 0.3755090139028397
2023-11-20 14:43:35,573 INFO [inference_audio_tagging.py:421] Done